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1 Trigonometry Review
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Figure 1: Scenario in Problem 1. Figure 2: Scenario in Problem 2.

1. Prove the Pythagorean theorem using “conservation of area.” Start with Figure 1.

In Figure 1, the larger square has side length 𝑎+𝑏. The smaller, nested square has side length 𝑐. Four copies
of the right triangle with side lengths 𝑎, 𝑏, 𝑐 are placed around the square. We have

𝐴triangles + 𝐴small sq. = 𝐴big sq. [Conservation of area]

4𝐴triangle + 𝐴small sq. = 𝐴big sq.

4
(1
2
𝑎𝑏
)

+ 𝑐2 = (𝑎 + 𝑏)2 [Areas of triangle, square]

2𝑎𝑏 + 𝑐2 = 𝑎2 + 2𝑎𝑏 + 𝑏2 [Expanding]

𝑐2 = 𝑎2 + 𝑏2. Q.E.D.

2. Prove the Pythagorean theorem using a right triangle with an altitude drawn to its hypotenuse,
as shown in Figure 2, making use of similar right triangles.

Let ℎ = 𝐶𝐹 , the length of the altitude to the hypotenuse. △𝐴𝐶𝐹 ∼ △𝐴𝐵𝐶 by AA Similarity because they
share an angle and both have a right angle. Therefore, 𝐴𝐹

𝐴𝐶 = 𝐴𝐶
𝐴𝐵 . Substituting named variables for these

lengths, we get
𝐴𝐹
𝑏

= 𝑏
𝑐
⟹ 𝐴𝐹 = 𝑏2

𝑐
.

Applying the same logic to △𝐶𝐹𝐵, we get △𝐶𝐹𝐵 ∼ △𝐴𝐵𝐶 , so 𝐵𝐹
𝐵𝐶 = 𝐵𝐶

𝐴𝐵 . Substituting, we get

𝐵𝐹
𝑎

= 𝑎
𝑐
⟹ 𝐵𝐹 = 𝑎2

𝑐
.

Since 𝐹 is between 𝐴 and 𝐵, we have 𝐴𝐵 = 𝐴𝐹 + 𝐹𝐵; substituting our found values for 𝐴𝐹 and 𝐹𝐵, we get

𝑐 = 𝐴𝐵 = 𝐴𝐹 + 𝐹𝐵

𝑐 = 𝑏2

𝑐
+ 𝑎2

𝑐
𝑐2 = 𝑏2 + 𝑎2. Q.E.D.

3. We now prove the trigonometric identities.

(a) Draw and label a right triangle and a unit circle, then write trig definitions for cos, sin, tan,
and sec in terms of your drawing.

The scenario is depicted in Figure 3. By the definition of sine and cosine, we have sin 𝜃 = 𝐴𝑃 and cos 𝜃 = 𝑂𝐴.
Since △𝑂𝐴𝑃 ∼ △𝑂𝑃𝑇 by AA Similarity, we have 𝑇𝑃

𝑂𝑃 = 𝐴𝑃
𝑂𝐴 . Substituting known values, we get

𝑇𝑃
1

= sin 𝜃
cos 𝜃

⟹ 𝑇𝑃 = tan 𝜃.
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Also, △𝑂𝐴𝑃 ∼ △𝑂𝐾𝑆 by AA, so 𝑂𝑆
𝑂𝐾 = 1

cos 𝜃 . Similarly, we have

𝑂𝑆
1

= 1
cos 𝜃

⟹ 𝑂𝑆 = sec 𝜃.

Finally, as an alternate interpretation of tan, we have 𝐾𝑆
𝑂𝐾 = 𝐴𝑃

𝑂𝐴 , so

𝐾𝑆
1

= sin 𝜃
cos 𝜃

⟹ 𝐾𝑆 = tan 𝜃.

𝑂 𝐴

𝑃

𝜃 𝑥

𝑦

sin 𝜃

cos 𝜃

1

𝑇

tan 𝜃

tan 𝜃

sec 𝜃

𝑆

𝐾

Figure 3: The right triangle and unit circle.

(b) Use a right triangle and the definitions of sin and cos to find and prove a value for sin2 𝜃 +
cos2 𝜃.

Referring back to Figure 3, focus on △𝑂𝐴𝑃 . It is a right triangle with side lengths 𝑎 = cos 𝜃, 𝑏 = sin 𝜃, and
𝑐 = 1. By the Pythagorean theorem, we have

𝑂𝐴2 + 𝐴𝑃 2 = 𝑂𝑃 2 [Pythagorean theorem]

cos2 𝜃 + sin2 𝜃 = 12 [Substitution]

sin2 𝜃 + cos2 𝜃 = 1. [Rearrange]

(c) Use the picture of the unit circle in Figure 4 to find and prove a value for cos(𝐴 − 𝐵). Note
that 𝐷1 and 𝐷2 are the same length because they subtend the same size arc of the circle.
Set them equal and work through the algebra, using the distance formula and part (b) of
this problem.

We have 𝐷1 = 𝐷2, so

𝐷2
1 = 𝐷2

2

(cos𝐴 − cos𝐵)2 + (sin𝐴 − sin𝐵)2 = (cos(𝐴 − 𝐵) − 1)2 + sin2(𝐴 − 𝐵)

cos2 𝐴 − 2 cos𝐴 cos𝐵 + cos2 𝐵 + sin2 𝐴 − 2 sin𝐴 sin𝐵 + sin2 𝐵 = cos2(𝐴 − 𝐵) − 2 cos(𝐴 − 𝐵)+

1 + sin2(𝐴 − 𝐵)

(cos2 𝐴 + sin2 𝐴) + (cos2 𝐵 + sin2 𝐴) − 2 sin𝐴 sin𝐵 = (cos2(𝐴 − 𝐵) + sin2(𝐴 − 𝐵))+
1 − 2 cos(𝐴 − 𝐵)

���:01 + 1 − 2 sin𝐴 sin𝐵 − 2 cos𝐴 cos𝐵 =���:01 + 1 − 2 cos(𝐴 − 𝐵)
2 sin𝐴 sin𝐵 + 2 cos𝐴 cos𝐵 = 2 cos(𝐴 − 𝐵)

sin𝐴 sin𝐵 + cos𝐴 cos𝐵 = cos(𝐴 − 𝐵). Q.E.D.
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(cos𝐵, sin𝐵)

(cos𝐴, sin𝐴)

(cos(𝐴 − 𝐵),
sin(𝐴 − 𝐵))

0◦

𝐷1
𝐷2

Figure 4: Scenario in Problem 3.

4. Write down as many trig identities as you can—no need to prove these.

sin(𝐴 + 𝐵) = sin(𝐴 − 𝐵) = cos(𝐴 + 𝐵) =
tan(𝐴 + 𝐵) = tan(𝐴 − 𝐵) = sin(2𝐴) =

cos(2𝐴) = tan(2𝐴) = sin
(

𝐴
2

)

=

cos
(

𝐴
2

)

= tan
(

𝐴
2

)

=

You should probably memorize these for convenience.

sin(𝐴 + 𝐵) = sin𝐴 cos𝐵 + cos𝐴 sin𝐴
sin(𝐴 − 𝐵) = sin𝐴 cos𝐵 − cos𝐴 sin𝐵
cos(𝐴 + 𝐵) = cos𝐴 cos𝐵 − sin𝐴 sin𝐵

tan(𝐴 + 𝐵) = tan𝐴 + tan𝐵
1 − tan𝐴 tan𝐵

tan(𝐴 − 𝐵) = tan𝐴 − tan𝐵
1 + tan𝐴 tan𝐵

sin(2𝐴) = 2 sin𝐴 cos𝐴

cos(2𝐴) = 2 cos2 𝐴 − 1 = 1 − 2 sin2 𝐴 = cos2 𝐴 − sin2 𝐴

tan(2𝐴) = 2 tan𝐴
1 − tan2 𝐴

sin
(𝐴
2

)

= ±
√

1 − cos𝐴
2

cos
(𝐴
2

)

= ±
√

1 + cos𝐴
2

tan
(𝐴
2

)

= sin𝐴
1 + cos𝐴

= 1 − cos𝐴
sin𝐴

5. Let’s review complex numbers and DeMoivre’s theorem.

(a) Recall that you can write a complex number both in Cartesian and polar forms. Let

𝑎 + 𝑏𝑖 = (𝑎, 𝑏) = (𝑟 cos 𝜃, 𝑟 sin 𝜃) = 𝑟 cos 𝜃 + 𝑖𝑟 sin 𝜃.

What is 𝑟 in terms of 𝑎 and 𝑏?

𝑟 is just the distance to the origin from 𝑎 + 𝑏𝑖. Draw a right triangle as shown in Figure 5. By the pythagorean
theorem, 𝑟 =

√

𝑎2 + 𝑏2.
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𝑥

𝑦

𝑧 = 𝑎 + 𝑏𝑖

𝑎

𝑏√ 𝑎2
+ 𝑏

2

Figure 5: 𝑎 + 𝑏𝑖 in the complex plane.

(b) Expand (𝑎 + 𝑏𝑖)(𝑐 + 𝑑𝑖) the usual way.

(𝑎 + 𝑏𝑖)(𝑐 + 𝑑𝑖) = 𝑎𝑐 + 𝑎𝑑𝑖 + 𝑏𝑐𝑖 + (𝑏𝑖)(𝑑𝑖)
= 𝑎𝑐 + (𝑎𝑑 + 𝑏𝑐)𝑖 − 𝑏𝑑
= 𝑎𝑐 − 𝑏𝑑 + (𝑎𝑑 + 𝑏𝑐)𝑖.

(c) Let 𝑎 + 𝑏𝑖 = 𝑟1(cos 𝜃 + 𝑖 sin 𝜃) and 𝑐 + 𝑑𝑖 = 𝑟2(cos𝜙 + 𝑖 sin𝜙). Multiply them, and use your
results from Problems 3c and 3d to show that multiplying two complex numbers involves
multiplying their lengths and adding their angles. This is DeMoivre’s theorem!

𝑟1(cos 𝜃 + 𝑖 sin 𝜃)𝑟2(cos𝜙 + 𝑖 sin𝜙) = 𝑟1𝑟2(cos 𝜃 cos𝜙 − sin 𝜃 sin𝜙 + 𝑖(sin 𝜃 cos𝜙 + cos 𝜃 sin𝜙))
= 𝑟1𝑟2(cos(𝜃 + 𝜙) + 𝑖 sin(𝜃 + 𝜙)).

(d) Use part (c) to simplify (
√

3 + 𝑖)18.

We have
√

3 + 𝑖 = 𝑟(cos 𝜃 + 𝑖 sin 𝜃) = 2
(

cos 𝜋
6 + 𝑖 sin 𝜋

6

)

.

(2
(

cos 𝜋
6
+ 𝑖 sin 𝜋

6

)

)18 = 218 ⋅
(

cos 𝜋
6
+ 𝑖 sin 𝜋

6

)18

= 218 ⋅
(

cos 𝜋
6
+ 𝑖 sin 𝜋

6

)

⋯
(

cos 𝜋
6
+ 𝑖 sin 𝜋

6

)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
18 copies

= 218 ⋅
(

cos 𝜋
3
+ 𝑖 sin 𝜋

3

)(

cos 𝜋
6
+ 𝑖 sin 𝜋

6

)

⋯
(

cos 𝜋
6
+ 𝑖 sin 𝜋

6

)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
16 copies

=⋮

= 218 ⋅ (cos 3𝜋 + 𝑖 sin 3𝜋)

= 218 ⋅ −1

= −218.

6. Here is a review of 2D rotation.

(a) Recall that we can graph complex numbers as ordered pairs in the complex plane. Now,
consider the complex number 𝑧 = cos 𝜃 + 𝑖 sin 𝜃, where 𝜃 is fixed. What is the magnitude of
𝑧?
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We have
|𝑧| =

√

cos2 𝜃 + sin2 𝜃 =
√

1 = 1.

(b) Multiplying 𝑧 ⋅ (𝑥+𝑦𝑖) yields a rotation of the point (𝑥, 𝑦) counterclockwise around the origin
by the angle 𝜃. Notice that rotating the graph counterclockwise around the origin has the
same effect as rotating the coordinate axes clockwise around the origin by the same angle
𝜃. What if we wanted to rotate clockwise by 𝜃 instead?

We can multiply by the conjugate of 𝑧, since

𝑧 = cos 𝜃 − 𝑖 sin 𝜃 = cos−𝜃 + 𝑖 sin −𝜃.

Thus, the operation is 𝑧 ⋅ (𝑥 + 𝑦𝑖) to rotate clockwise by 𝜃.

7. Rotate the following conics by (i) 30◦, (ii) 45◦, and (iii) 𝜃:

(a) 𝑥2 − 𝑦2 = 1

i. 30◦

We make the substitution 𝑥′ = 𝑥 cos 30◦ − 𝑦 sin 30◦ =
√

3
2 𝑥 − 𝑦

2 and 𝑦′ = 𝑥 sin 30◦ + 𝑦 cos 30◦ = 𝑥
2 +

√

3
2 𝑦:

𝑥′2 − 𝑦′2 = 1
(
√

3
2

𝑥 −
𝑦
2

)2

−

(

𝑥
2
+

√

3
2

𝑦

)2

= 1

𝑥2∕2 −
√

3𝑥𝑦 − 𝑦2∕2 = 1.

ii. 45◦

We make the substitution 𝑥′ = 𝑥 cos 45◦ − 𝑦 sin 45◦ =
√

2
2 𝑥−

√

2
2 𝑦 and 𝑦′ = 𝑥 sin 45◦ + 𝑦 cos 45◦ =

√

2
2 𝑥+

√

2
2 𝑦:

𝑥′2 − 𝑦′2 = 1
(
√

2
2

𝑥 −

√

2
2

𝑦

)2

−

(
√

2
2

𝑥 +

√

2
2

𝑦

)2

= 1

−2𝑥𝑦 = 1.

iii. 𝜃

We make the substitution 𝑥′ = 𝑥 cos 𝜃 − 𝑦 sin 𝜃 and 𝑦′ = 𝑥 sin 𝜃 + 𝑦 cos 𝜃:

𝑥′2 − 𝑦′2 = 1

(𝑥 cos 𝜃 − 𝑦 sin 𝜃)2 − (𝑥 sin 𝜃 + 𝑦 cos 𝜃)2 = 1.

(b) 𝑥2

16 − 𝑦2

9 = 1

i. 30◦

We make the substitution 𝑥′ = 𝑥 cos 30◦ − 𝑦 sin 30◦ =
√

3
2 𝑥 − 𝑦

2 and 𝑦′ = 𝑥 sin 30◦ + 𝑦 cos 30◦ = 𝑥
2 +

√

3
2 𝑦:

𝑥′2

16
−

𝑦′2

9
= 1

(

√

3
2 𝑥 − 𝑦

2

)2

16
−

(

𝑥
2 +

√

3
2 𝑦

)2

9
= 1

1
576

(11𝑥2 − 50
√

3𝑥𝑦 − 39𝑦2) = 1.
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ii. 45◦

We make the substitution 𝑥′ = 𝑥 cos 45◦ − 𝑦 sin 45◦ =
√

2
2 𝑥−

√

2
2 𝑦 and 𝑦′ = 𝑥 sin 45◦ + 𝑦 cos 45◦ =

√

2
2 𝑥+

√

2
2 𝑦:

𝑥′2

16
−

𝑦′2

9
= 1

(

√

2
2 𝑥 −

√

2
2 𝑦

)2

16
−

(

√

2
2 𝑥 +

√

2
2 𝑦

)2

9
= 1

1
288

(−𝑥 − 7𝑦)(7𝑥 + 𝑦) = 1.

iii. 𝜃

We make the substitution 𝑥′ = 𝑥 cos 𝜃 − 𝑦 sin 𝜃 and 𝑦′ = 𝑥 sin 𝜃 + 𝑦 cos 𝜃:

𝑥′2

16
−

𝑦′2

9
= 1

(𝑥 cos 𝜃 − 𝑦 sin 𝜃)2

16
−

(𝑥 sin 𝜃 + 𝑦 cos 𝜃)2

9
= 1.

(c) 𝑦2 = 4𝐶𝑥

i. 30◦

We make the substitution 𝑥′ = 𝑥 cos 30◦ − 𝑦 sin 30◦ =
√

3
2 𝑥 − 𝑦

2 and 𝑦′ = 𝑥 sin 30◦ + 𝑦 cos 30◦ = 𝑥
2 +

√

3
2 𝑦:

𝑦′2 = 4𝐶𝑥′
(

𝑥
2
+

√

3
2

𝑦

)2

= 4𝐶

(
√

3
2

𝑥 −
𝑦
2

)

.

ii. 45◦

We make the substitution 𝑥′ = 𝑥 cos 45◦ − 𝑦 sin 45◦ =
√

2
2 𝑥−

√

2
2 𝑦 and 𝑦′ = 𝑥 sin 45◦ + 𝑦 cos 45◦ =

√

2
2 𝑥+

√

2
2 𝑦:

𝑦′2 = 4𝐶𝑥′
(
√

2
2

𝑥 +

√

2
2

𝑦

)2

= 4𝐶

(
√

2
2

𝑥 −

√

2
2

𝑦

)

1
2
(𝑥 + 𝑦)2 = 2𝐶

√

2(𝑥 − 𝑦).

iii. 𝜃

We make the substitution 𝑥′ = 𝑥 cos 𝜃 − 𝑦 sin 𝜃 and 𝑦′ = 𝑥 sin 𝜃 + 𝑦 cos 𝜃:

𝑦′2 = 4𝐶𝑥′

(𝑥 cos 𝜃 − 𝑦 sin 𝜃)2 = 4𝐶 (𝑥 sin 𝜃 + 𝑦 cos 𝜃) .
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2 It’s a Snap

∙ 𝐼 𝐴 𝐵 𝐶 𝐷 𝐸
𝐼
𝐴 𝐸
𝐵
𝐶
𝐷
𝐸

Figure 1: Unfilled 3-post snap group table.

snap!
⟹

Figure 2: 𝐸 ∙ 𝐸 ∙ 𝐸 = 𝐼 ; 𝐸 has period 3. Figure 3: Some 4-post group elements.

1. Fill out a 6×6 table like the one in Figure 1, showing the results of each of the 36 possible snaps,
where 𝑋 ∙ 𝑌 is in 𝑋’s row and 𝑌 ’s column. 𝐴 ∙ 𝐵 = 𝐸 is done for you.

∙ 𝐼 𝐴 𝐵 𝐶 𝐷 𝐸
𝐼 𝐼 𝐴 𝐵 𝐶 𝐷 𝐸
𝐴 𝐴 𝐼 𝐸 𝐷 𝐶 𝐵
𝐵 𝐵 𝐷 𝐼 𝐸 𝐴 𝐶
𝐶 𝐶 𝐸 𝐷 𝐼 𝐵 𝐴
𝐷 𝐷 𝐵 𝐶 𝐴 𝐸 𝐼
𝐸 𝐸 𝐶 𝐴 𝐵 𝐼 𝐷

2. Which of the elements is the identity element 𝐾 , such that 𝑋 ∙𝐾 = 𝐾 ∙𝑋 = 𝑋 for all 𝑋?

The identity element is 𝐼 , since 𝐼 ∙ 𝐴 = 𝐴 ∙ 𝐼 = 𝐴, 𝐼 ∙ 𝐵 = 𝐵 ∙ 𝐼 = 𝐵, and so forth.

3. Does every element have an inverse? In other words, can you get to the identity element from
every element using only one snap?

Yes you can. The inverses are shown below.

𝐼 ↔ 𝐼 𝐴 ↔ 𝐴 𝐵 ↔ 𝐵 𝐶 ↔ 𝐶 𝐷 ↔ 𝐸

Note that the inverse of an element 𝑋 is denoted 𝑋−1.

4. (a) Is the snap operation commutative (does 𝑋 ∙ 𝑌 = 𝑌 ∙𝑋 for all 𝑋, 𝑌 )?

No, the snap operation is not commutative. For example, 𝐴 ∙ 𝐵 = 𝐸, but 𝐵 ∙ 𝐴 = 𝐷.

(b) Is the snap operation associative (does (𝑋 ∙ 𝑌 ) ∙𝑍 = 𝑋 ∙ (𝑌 ∙𝑍) for all 𝑋, 𝑌 ,𝑍)?

Yes, the snap operation is associative. You can rationalize this as the fact that a 4× 3 grid of posts is snapped
to a single configuration, regardless of which middle row you remove first. This is shown in Figure 4.

5. (a) For any elements 𝑋, 𝑌 , is there always an element 𝑍 so that 𝑋 ∙𝑍 = 𝑌 ?

8



snap!
⟹

Figure 4: A 4 × 3 grid of posts has a unique result after the snap operation.

Yes, there is always a way to get from one element to another in one snap. You can prove this by construction.
If element 𝑋 connects 𝑛1 to 𝑛′1, 𝑛2 to 𝑛′2, and 𝑛3 to 𝑛′3, and element 𝑌 connects 𝑚1 to 𝑚′

1, 𝑚2 to 𝑚′
2, and 𝑚3 to

𝑚′
3, then the solution 𝑍 to 𝑋 ∙𝑍 = 𝑌 connects 𝑚1 to 𝑛𝑚′

1
, 𝑚2 to 𝑛𝑚′

2
, and 𝑚3 to 𝑛𝑚′

3
.

A more transparent solution uses inverses. We multiply 𝑋 by 𝑋−1, then by 𝑌 :

𝑋 ∙𝑋−1 ∙ 𝑌 = 𝑌 .

But since every element has an inverse, and the snap operation is associative, we have

𝑋 ∙ (𝑋−1 ∙ 𝑌 ) = 𝑌

⟹ 𝑍 = 𝑋−1 ∙ 𝑌 .

We have thus constructed the element 𝑍.

(b) In (a), is 𝑍 always unique?

Yes. We could try all combinations, but let’s try a proof by contradiction. Suppose we have two solutions 𝑍1
and 𝑍2 so that 𝑍1 ≠ 𝑍2 and

𝑋 ∙𝑍1 = 𝑌
𝑋 ∙𝑍2 = 𝑌 .

That is, we assume that for some 𝑋 and 𝑌 , there are two possible values for 𝑍. We multiply both sides on
the left by 𝑌 −1:

𝑌 −1 ∙𝑋 ∙𝑍1 = 𝑌 −1 ∙ 𝑌 = 𝐼

𝑌 −1 ∙𝑋 ∙𝑍2 = 𝐼.

So 𝑍1, 𝑍2 are both inverses of (𝑌 −1 ∙𝑋). But the inverse of an element is unique; we’ve showed this by listing
them all out! Thus, 𝑍1 = 𝑍2, contradicting our assumption and proving that 𝑍 is unique in 𝑋 ∙𝑍 = 𝑌 .

6. If you constructed a group table using only five of the snap elements, the table would not de-
scribe a group, because there would be entries in the table outside of those 5. Indeed, a group
must be closed under its operation: If we compose any two elements 𝑋 ∙ 𝑌 = 𝑍, 𝑍 must also be
an element of the group. Some subsets of our six elements, however, do happen to be closed
among themselves. Write valid group tables using exactly one, two, and three elements from
the snap group. These are known as subgroups.

Here are tables with 1, 2, and 3 elements:

∙ 𝐼
𝐼 𝐼

∙ 𝐼 𝐴
𝐼 𝐼 𝐴
𝐴 𝐴 𝐼

∙ 𝐼 𝐷 𝐸
𝐼 𝐼 𝐷 𝐸
𝐷 𝐷 𝐸 𝐼
𝐸 𝐸 𝐼 𝐷

7. What do you guess is a good definition of a mathematical group? (Hint: consider your answers
to Problems 2–6.)
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(Answers may vary.)
Definition of group: A group 𝐺 is a set of elements together with a binary operation that meets the

following criteria:

(a) Identity: There is an element 𝐼 ∈ 𝐺 such that for all 𝑋 ∈ 𝐺, 𝑋 ∙ 𝐼 = 𝐼 ∙𝑋 = 𝑋.

(b) Closure: If 𝑋, 𝑌 are elements of the group, then 𝑋 ∙ 𝑌 is also an element of the group.

(c) Invertibility: Each element 𝑋 has an inverse 𝑋−1 such that 𝑋 ∙𝑋−1 = 𝑋−1 ∙𝑋 = 𝐼 .

(d) Associativity: For all elements 𝑋, 𝑌 , and 𝑍, 𝑋 ∙ (𝑌 ∙𝑍) = (𝑋 ∙ 𝑌 ) ∙𝑍.

8. Notice that 𝐸 ∙𝐸 ∙𝐸 = 𝐼 (See Figure 2). We saw that 𝐸 has a period of 3 when acting upon itself.
Which elements have a period of

(a) 1?

𝐼 is the only element with a period of 1, since 𝐼 = 𝐼 .

(b) 2?

𝐴, 𝐵, and 𝐶 have periods of 2, since for each 𝑋 ∈ 𝐴,𝐵, 𝐶 we have 𝑋 ∙𝑋 = 𝐼 .

(c) 3?

𝐷 and 𝐸 have periods of 3, since for each 𝑌 ∈ 𝐷,𝐸 we have 𝑌 ∙ 𝑌 ≠ 𝐼 , but 𝑌 ∙ 𝑌 ∙ 𝑌 = 𝐼 .

9. Answer the following with the one-, two-, and four-post snap groups 𝑆1, 𝑆2 and 𝑆4. These are
just the analogous groups for connections between rows of one, two, and four posts.

(a) How many elements does the group have?

𝑆1 has 1! = 1 elements. 𝑆2 has 2! = 2 elements. 𝑆4 has 4! = 24 elements.

(b) Systematically draw and name the elements.

𝐼
𝐼 𝐴

Figure 5: Elements of 𝑆1. Figure 6: Elements of 𝑆2.

𝐼 𝐴 𝐵 𝐶 𝐷 𝐸

𝐹 𝐺 𝐻 𝐽 𝐾 𝐿

𝑀 𝑁 𝑂 𝑃 𝑄 𝑅

𝑆 𝑇 𝑈 𝑉 𝑊 𝑋
Figure 7: Elements of 𝑆4.

(c) Make a group table of these elements. For four posts, instead of creating a table, give the
number of entries that the table would have.

Here are group tables for 𝑆1 and 𝑆2.
There are 576 entries in the 𝑆4 table; the full table is given at the end of the chapter, in Figure 12, for the

demented.
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∙ 𝐼
𝐼 𝐼

∙ 𝐼 𝐴
𝐼 𝐼 𝐴
𝐴 𝐴 𝐼

Figure 8: Group table for 𝑆1. Figure 9: Group table for 𝑆2.

(d) What is the relationship of the 𝑆3 table to this new table?

Both 𝑆1’s and 𝑆2’s tables can be found within the original table for 𝑆3, because they are subgroups of 𝑆3. In
turn, 𝑆3 is a subgroup of 𝑆4.

10. What is a shortcut for generating all elements of a snap group without drawing out the possible
configurations?

(Answers may vary.)
One way is to treat each element as a list of indices. For example, 𝐼 is the ordered triple (1, 2, 3) because

it takes column 1 to 1, 2 to 2, and 3 to 3. 𝐴 is (1, 3, 2), because it takes 1 to 1, 2 to 3, and 3 to 2.1

This is a bit more compact and easy to work with: You can simply choose the indices for each configuration
rather than make a drawing. (It also makes it easy to write a program to calculate. In fact, it is behind every
table and diagram in this chapter.)

11. (a) How many elements would there be in the five-post snap group?

There would be 5! = 120 elements in 𝑆5.

(b) How many entries would its table have?

There would be 5!2 = 14400 entries in 𝑆5’s table.

(c) What possible periods would its elements have? Make sure you include a period of six!

This is a more difficult question. We must ask what characteristics of an element determine its period.
If we observe the periodicity of an element with a pretty large period, say, one from 𝑆5 with a period of 6,

you can see how a relatively large period can arise. This is shown in Figure 11.
We can split up this element into two components: a component with period 3 and one with period 2. Let’s

call these components 𝐶3 and 𝐶2. After 2 steps, the 𝐶3 has not completed one period, even though 𝐶2. After
3 steps, 𝐶3 has completed one period, but 𝐶2 has gone through 3

2 . It takes lcm(2, 3) = 6 steps before both
components “line up!”

Even if it’s not obvious, all snap elements can be split up into some number of these cyclic components.
For example, the element from 𝑆8 shown in Figure 10 comprises two size 3 and one size 2 component. It
therefore has a period of lcm(2, 3, 3) = 6. Recall that the least common multiple of a set of numbers, here
denoted lcm, is the smallest (positive) integer which they all evenly divide. For example, lcm{8, 4} = 4,
lcm{2, 3, 5} = 30, and lcm{9, 12} = 36. Note that it does not have a period of 2 ⋅ 3 ⋅ 3 = 18—we take the least
common multiple, not the product.

Figure 10: This element from 𝑆8 has components of size 2, 3, 3.

1This representation may be called the one-line notation of a permutation. You can also write a permutation by writing what index
goes to which to a 2 × 𝑛 matrix, where the top row gives the start index and the bottom row gives the end index; this is two-line notation,
due to Cauchy. Other notations exist; a one you will find in lots of combinatorics texts writes the cycles in groups of parentheses. For
example, the one-line (2, 5, 4, 3, 1) becomes (1 2 5)(3 4): The elements at indices 1, 2, 5 are cycled, as are the elements at indices 3, 4. In
this notation, the identity permutation on 𝑛 elements is (1)(2)(3)...(𝑛), since it comprises 𝑛 1-cycles. Often 1-cycles—i.e., elements that
do not move—are simply omitted.
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Let us consider every possible decomposition of an element in 𝑆5. It could have components of size 1, 1, 1, 1, 1,
yield a period of 1; components of size 1, 1, 1, 2, yielding a period of 2; components of size 1, 1, 3, yielding a
period of 3; components of size 1, 4, yielding a period of 4; a component of size 5, yielding a period of 5; and
component of size 1, 2, 3, yielding a period of 6. Thus, periods 1, 2, 3, 4, 5, 6 are the only ones achievable.

(d) Extend your answers for Problems a through c to 𝑀 posts per row.

There are (a) 𝑀! elements in the 𝑀-post snap group, and thus (b) 𝑀!2 elements in the corresponding group
table. The possible periods are harder to calculate, but they can be generated like so:

Figure 11: This element from 𝑆5 has a period of 6.

Suppose we have some integers 𝑥𝑖 > 0 and if you add them all, the sum is 𝑀 . Then lcm(𝑥1, 𝑥2,⋯ , 𝑥𝑛) is a
valid period; the least common multiple of all 𝑥𝑖 is a possible period.

In set builder notation, the set of possible periods 𝑃𝑛 for the 𝑛-post snap group as

𝑃𝑛 =

{

lcm(𝑥1, 𝑥2,⋯ , 𝑥𝑛)
|

|

|

|

|

𝑥𝑖 are positive integers and
∑

𝑖
𝑥𝑖 = 𝑛

}

.

In English: 𝑝 is the period of some element of the 𝑛-post snap group if and only if it is the least common
multiple of some set of numbers, call them 𝑥𝑖, which sum to 𝑛. In our case of size 5, we actually got every
period from one to six, but the set of possible periods is not necessarily a contiguous range. For example, the
possible periods in the 7-post snap group is {1, 2, 3, 4, 5, 6, 7, 10, 12}.

A full understanding of these periods requires advanced mathematics. For example, the maximum such
period (i.e. max𝑃𝑛) is known as Landau’s function, 𝑔(𝑛). It turns out that ln 𝑔(𝑛) ∼

√

𝑛 ln 𝑛 as 𝑛 → ∞, a result
proved in 1902 by Edmund Landau. Therefore, 𝑔(𝑛) is sub-exponential but grows faster than any polynomial.

12. A permutation of a set of things is an order in which they can be arranged. What is the relation-
ship between the set of permutations of 𝑚 things and the 𝑚-post snap group?

We can make a straightforward correspondence between a permutation of 𝑚 things and an element of the
𝑚-post snap group. If we think back to the idea of treating each element of the group as a list of indices, the
correspondence is obvious. For example, 𝐼 is the ordered triple (1, 2, 3) because it takes column 1 to 1, 2 to
2, and 3 to 3. 𝐴 is (1, 3, 2), because it takes 1 to 1, 2 to 3, and 3 to 2. But each ordered triple is a permutation
of 1, 2, 3! This extends to any 𝑚.
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∙ 𝐼 𝐴 𝐵 𝐶 𝐷 𝐸 𝐹 𝐺 𝐻 𝐽 𝐾 𝐿 𝑀 𝑁 𝑂 𝑃 𝑄 𝑅 𝑆 𝑇 𝑈 𝑉 𝑊 𝑋
𝐼 𝐼 𝐴 𝐵 𝐶 𝐷 𝐸 𝐹 𝐺 𝐻 𝐽 𝐾 𝐿 𝑀 𝑁 𝑂 𝑃 𝑄 𝑅 𝑆 𝑇 𝑈 𝑉 𝑊 𝑋
𝐴 𝐴 𝐼 𝐷 𝐸 𝐵 𝐶 𝐺 𝐹 𝐾 𝐿 𝐻 𝐽 𝑆 𝑇 𝑈 𝑉 𝑊 𝑋 𝑀 𝑁 𝑂 𝑃 𝑄 𝑅
𝐵 𝐵 𝐶 𝐼 𝐴 𝐸 𝐷 𝑀 𝑁 𝑂 𝑃 𝑄 𝑅 𝐹 𝐺 𝐻 𝐽 𝐾 𝐿 𝑇 𝑆 𝑊 𝑋 𝑈 𝑉
𝐶 𝐶 𝐵 𝐸 𝐷 𝐼 𝐴 𝑁 𝑀 𝑄 𝑅 𝑂 𝑃 𝑇 𝑆 𝑊 𝑋 𝑈 𝑉 𝐹 𝐺 𝐻 𝐽 𝐾 𝐿
𝐷 𝐷 𝐸 𝐴 𝐼 𝐶 𝐵 𝑆 𝑇 𝑈 𝑉 𝑊 𝑋 𝐺 𝐹 𝐾 𝐿 𝐻 𝐽 𝑁 𝑀 𝑄 𝑅 𝑂 𝑃
𝐸 𝐸 𝐷 𝐶 𝐵 𝐴 𝐼 𝑇 𝑆 𝑊 𝑋 𝑈 𝑉 𝑁 𝑀 𝑄 𝑅 𝑂 𝑃 𝐺 𝐹 𝐾 𝐿 𝐻 𝐽
𝐹 𝐹 𝐺 𝐻 𝐽 𝐾 𝐿 𝐼 𝐴 𝐵 𝐶 𝐷 𝐸 𝑂 𝑃 𝑀 𝑁 𝑅 𝑄 𝑈 𝑉 𝑆 𝑇 𝑋 𝑊
𝐺 𝐺 𝐹 𝐾 𝐿 𝐻 𝐽 𝐴 𝐼 𝐷 𝐸 𝐵 𝐶 𝑈 𝑉 𝑆 𝑇 𝑋 𝑊 𝑂 𝑃 𝑀 𝑁 𝑅 𝑄
𝐻 𝐻 𝐽 𝐹 𝐺 𝐿 𝐾 𝑂 𝑃 𝑀 𝑁 𝑅 𝑄 𝐼 𝐴 𝐵 𝐶 𝐷 𝐸 𝑉 𝑈 𝑋 𝑊 𝑆 𝑇
𝐽 𝐽 𝐻 𝐿 𝐾 𝐹 𝐺 𝑃 𝑂 𝑅 𝑄 𝑀 𝑁 𝑉 𝑈 𝑋 𝑊 𝑆 𝑇 𝐼 𝐴 𝐵 𝐶 𝐷 𝐸
𝐾 𝐾 𝐿 𝐺 𝐹 𝐽 𝐻 𝑈 𝑉 𝑆 𝑇 𝑋 𝑊 𝐴 𝐼 𝐷 𝐸 𝐵 𝐶 𝑃 𝑂 𝑅 𝑄 𝑀 𝑁
𝐿 𝐿 𝐾 𝐽 𝐻 𝐺 𝐹 𝑉 𝑈 𝑋 𝑊 𝑆 𝑇 𝑃 𝑂 𝑅 𝑄 𝑀 𝑁 𝐴 𝐼 𝐷 𝐸 𝐵 𝐶
𝑀 𝑀 𝑁 𝑂 𝑃 𝑄 𝑅 𝐵 𝐶 𝐼 𝐴 𝐸 𝐷 𝐻 𝐽 𝐹 𝐺 𝐿 𝐾 𝑊 𝑋 𝑇 𝑆 𝑉 𝑈
𝑁 𝑁 𝑀 𝑄 𝑅 𝑂 𝑃 𝐶 𝐵 𝐸 𝐷 𝐼 𝐴 𝑊 𝑋 𝑇 𝑆 𝑉 𝑈 𝐻 𝐽 𝐹 𝐺 𝐿 𝐾
𝑂 𝑂 𝑃 𝑀 𝑁 𝑅 𝑄 𝐻 𝐽 𝐹 𝐺 𝐿 𝐾 𝐵 𝐶 𝐼 𝐴 𝐸 𝐷 𝑋 𝑊 𝑉 𝑈 𝑇 𝑆
𝑃 𝑃 𝑂 𝑅 𝑄 𝑀 𝑁 𝐽 𝐻 𝐿 𝐾 𝐹 𝐺 𝑋 𝑊 𝑉 𝑈 𝑇 𝑆 𝐵 𝐶 𝐼 𝐴 𝐸 𝐷
𝑄 𝑄 𝑅 𝑁 𝑀 𝑃 𝑂 𝑊 𝑋 𝑇 𝑆 𝑉 𝑈 𝐶 𝐵 𝐸 𝐷 𝐼 𝐴 𝐽 𝐻 𝐿 𝐾 𝐹 𝐺
𝑅 𝑅 𝑄 𝑃 𝑂 𝑁 𝑀 𝑋 𝑊 𝑉 𝑈 𝑇 𝑆 𝐽 𝐻 𝐿 𝐾 𝐹 𝐺 𝐶 𝐵 𝐸 𝐷 𝐼 𝐴
𝑆 𝑆 𝑇 𝑈 𝑉 𝑊 𝑋 𝐷 𝐸 𝐴 𝐼 𝐶 𝐵 𝐾 𝐿 𝐺 𝐹 𝐽 𝐻 𝑄 𝑅 𝑁 𝑀 𝑃 𝑂
𝑇 𝑇 𝑆 𝑊 𝑋 𝑈 𝑉 𝐸 𝐷 𝐶 𝐵 𝐴 𝐼 𝑄 𝑅 𝑁 𝑀 𝑃 𝑂 𝐾 𝐿 𝐺 𝐹 𝐽 𝐻
𝑈 𝑈 𝑉 𝑆 𝑇 𝑋 𝑊 𝐾 𝐿 𝐺 𝐹 𝐽 𝐻 𝐷 𝐸 𝐴 𝐼 𝐶 𝐵 𝑅 𝑄 𝑃 𝑂 𝑁 𝑀
𝑉 𝑉 𝑈 𝑋 𝑊 𝑆 𝑇 𝐿 𝐾 𝐽 𝐻 𝐺 𝐹 𝑅 𝑄 𝑃 𝑂 𝑁 𝑀 𝐷 𝐸 𝐴 𝐼 𝐶 𝐵
𝑊 𝑊 𝑋 𝑇 𝑆 𝑉 𝑈 𝑄 𝑅 𝑁 𝑀 𝑃 𝑂 𝐸 𝐷 𝐶 𝐵 𝐴 𝐼 𝐿 𝐾 𝐽 𝐻 𝐺 𝐹
𝑋 𝑋 𝑊 𝑉 𝑈 𝑇 𝑆 𝑅 𝑄 𝑃 𝑂 𝑁 𝑀 𝐿 𝐾 𝐽 𝐻 𝐺 𝐹 𝐸 𝐷 𝐶 𝐵 𝐴 𝐼

Figure 12: Group table for 𝑆4.
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3 From Snaps to Flips

1. Is the list of six operations complete? (Are there any other isometries of the equilateral triangle
that preserve its shape and location?)

There are no other isometries for this triangle; our list of operations is complete. To see why, note that the
vertices must exchange places. At most there is 3! = 6 ways to do this, so we have already achieved the
maximum possible number of isometries.

⋅ 𝐼 𝐴 𝐵 𝐶 𝐷 𝐸
𝐼
𝐴 𝐵
𝐵
𝐶
𝐷
𝐸

Figure 1: Unfilled 𝐷3 group table.

2. As with the snap group, we can make a group table for the dihedral group. Fill out a table like
the one in Figure 1 in your notebook. Like the snap group table, the top row indicates what
operation is done first and the left column indicates what’s done second. In other words, 𝑋𝑌 is
in 𝑋’s row and 𝑌 ’s column. 𝐴𝐷 = 𝐵 is done for you.

The completed table is shown in Figure 2.

⋅ 𝐼 𝐴 𝐵 𝐶 𝐷 𝐸
𝐼 𝐼 𝐴 𝐵 𝐶 𝐷 𝐸
𝐴 𝐴 𝐼 𝐷 𝐸 𝐵 𝐶
𝐵 𝐵 𝐸 𝐼 𝐷 𝐶 𝐴
𝐶 𝐶 𝐷 𝐸 𝐼 𝐴 𝐵
𝐷 𝐷 𝐶 𝐴 𝐵 𝐸 𝐼
𝐸 𝐸 𝐵 𝐶 𝐴 𝐼 𝐷

∙ 𝐼 𝐴 𝐵 𝐶 𝐷 𝐸
𝐼 𝐼 𝐴 𝐵 𝐶 𝐷 𝐸
𝐴 𝐴 𝐼 𝐸 𝐷 𝐶 𝐵
𝐵 𝐵 𝐷 𝐼 𝐸 𝐴 𝐶
𝐶 𝐶 𝐸 𝐷 𝐼 𝐵 𝐴
𝐷 𝐷 𝐵 𝐶 𝐴 𝐸 𝐼
𝐸 𝐸 𝐶 𝐴 𝐵 𝐼 𝐷

Figure 2: Completed 𝐷3 group table. Figure 3: Completed 𝑆3 group table from the last
chapter.

3. What is the relationship between the tables for the snap group 𝑆3 and the dihedral group 𝐷3?

𝐷3’s table is 𝑆3’s table flipped over the top-left–bottom-right diagonal, and vice versa. Contrast 𝐷3 from
Figure 2 to 𝑆3 in Figure 3. If these were matrices, one would be the transpose of the other: we’ll get to that
later.

4. Check your understanding by defining isomorphic in your own words.

(Answers may vary.)
Isomorphic groups have:

• the same order (size);

• the same structure;

• a one-to-one correspondence between the elements of the groups;

• and group operations preserved by the correspondence.

5. (a) Make a table for only the rotations of 𝐷3, a subgroup of 𝐷3.
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The table is shown below. Note that the identity element 𝐼 is a rotation of 0. Interestingly, this subgroup is a
commutative group (discussed in the next chapter), also known as an abelian group.

⋅ 𝐼 𝐷 𝐸
𝐼 𝐼 𝐷 𝐸
𝐷 𝐷 𝐸 𝐼
𝐸 𝐸 𝐼 𝐷

(b) Which subgroup of the snap group 𝑆3 is isomorphic to the subgroup in (a)?

The same elements (nominally) make the same subgroup:

⋅ 𝐼 𝐷 𝐸
𝐼 𝐼 𝐷 𝐸
𝐷 𝐷 𝐸 𝐼
𝐸 𝐸 𝐼 𝐷

6. What shape’s dihedral group is isomorphic to

(a) the two post snap group 𝑆2?

The dihedral group of a line segment is isomorphic to 𝑆2. After all, you can only reflect it over its midpoint,
which is the other element of 𝑆2 besides the identity. We can also think of this as permuting the two endpoints
or vertices of a line segment.

(b) the one post snap group 𝑆1?

The dihedral group of a point is isomorphic to 𝑆1, because the only element is the identity element. This is
permuting the one vertex of a point.

(c) the four post snap group 𝑆4?

For this question we need to think 3 dimensions. There are four vertices to permute, but we can’t do that on
a square since diagonal points will remain on diagonals, as shown in Figure 4.

𝐴 𝐵

𝐶𝐷

𝐴′ 𝐶 ′

𝐵′𝐷′

̸⟶

Figure 4: At right is a valid permutation of the vertices, but not a valid isometry of the square.

Instead, we choose the regular tetrahedron, so that there are no “diagonals”; every permutation is achievable.
Note that rotations and reflections are now in 3 dimensional space, which is a bit difficult to visualize. A sample
rotation is depicted in Figure 5.

Figure 5: A rotation of the tetrahedron (orthographic view).

15



Figure 6: A 3D projection of the regular 4-simplex. In a true realization, every line segment here would be the
same length.

(d) the five post snap group 𝑆5?

This is isomorphic to the dihedral group of the 4-dimensional equivalent of the tetrahedron, also known as the
regular 4-simplex. A projection is shown in Figure 6, but it cannot be faithfully represented on this paper.

7. Find a combination of 𝐴 and 𝐷 that yields 𝐶 .

If we apply 𝐷 twice, we get 𝐸. Applying 𝐴 to 𝐸, we get 𝐶 . Thus, a combination (among many) is
𝐴𝐷𝐷 = 𝐶 , which can also be written as 𝐴𝐷2 = 𝐶 .

8. We call 𝐴 and 𝐷 generators of the group because every element of the group is expressible
as some combination of 𝐴s and 𝐷s. For convenience, let’s call 𝐴 “𝑓” since it’s a flip, and
call 𝐷 “𝑟” meaning a 120 deg rotation counterclockwise. Then, for example, 𝑓𝑟2 is a rotation
of 2 ⋅ 120 deg = 240 deg, followed by a flip across the 𝐴 axis, equivalent to our original 𝐶 (see
Figure ??). Make a new table using 𝐼 , 𝑟, 𝑟2, 𝑓 , 𝑓𝑟, and 𝑓𝑟2 as elements, like the one in Figure 7.
Note that the element order is different!

⋅ 𝐼 𝑟 𝑟2 𝑓 𝑓𝑟 𝑓𝑟2
𝐼
𝑟 𝑓𝑟2
𝑟2
𝑓
𝑓𝑟
𝑓𝑟2

Figure 7: Unfilled alternate 𝐷3 table.

The filled table is shown in Figure 8 below.

⋅ 𝐼 𝑟 𝑟2 𝑓 𝑓𝑟 𝑓𝑟2
𝐼 𝐼 𝑟 𝑟2 𝑓 𝑓𝑟 𝑓𝑟2
𝑟 𝑟 𝑟2 𝐼 𝑓𝑟2 𝑓 𝑓𝑟
𝑟2 𝑟2 𝐼 𝑟 𝑓𝑟 𝑓𝑟2 𝑓
𝑓 𝑓 𝑓𝑟 𝑓𝑟2 𝐼 𝑟 𝑟2
𝑓𝑟 𝑓𝑟 𝑓𝑟2 𝑓 𝑟2 𝐼 𝑟
𝑓𝑟2 𝑓𝑟2 𝑓 𝑓𝑟 𝑟 𝑟2 𝐼

Figure 8: Completed alternate 𝐷3 table.

Note that 𝐼 = 𝐼 , 𝐴 = 𝑓 , 𝐵 = 𝑓𝑟, 𝐶 = 𝑓𝑟2, 𝐷 = 𝑟, and 𝐸 = 𝑟2.

9. What other pairs of elements could you have used to generate the table?

You could also use any of the following pairs: {𝐴,𝐸}, {𝐵,𝐷}, {𝐵,𝐸}, {𝐶,𝐷}, {𝐶,𝐸}, {𝐴,𝐵}, {𝐵,𝐶}, {𝐴,𝐶}.
In essence, you can generate it with any rotation element and any reflection element, or with any two reflection
elements.
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10. Notice the 3 × 3 table of a group you’ve already described in the top-left corner of your table.
What is it, and what are the two possible generators of this three-element group?

This is the cyclic group of order 3, 𝐶3, also known as the rotation group of the equilateral triangle. The two
possible generators are 𝑟 and 𝑟2.

11. Explain why each element of the dihedral group 𝐷3 has the period it has.

𝐼 has a period of 1 because it is the identity. 𝐴,𝐵, 𝐶 have periods of 2 because they are reflections, so
they are their own inverse transformation. 𝐷 and 𝐸 are rotations of a multiple of 1∕3 of a turn. They take 3
iterations to resolve, and thus have period 3.

12. Some pairs of elements of the dihedral group are two-element subgroups. Which pairs are they?

These would be the pairs 𝐼, 𝐴, 𝐼, 𝐵, and 𝐼, 𝐶 , since 𝐴 ⋅ 𝐴 = 𝐵 ⋅ 𝐵 = 𝐶 ⋅ 𝐶 = 𝐼 so the subgroup is closed.
These are shown in Figure 9.

⋅ 𝐼 𝐴
𝐼 𝐼 𝐴
𝐴 𝐴 𝐼

⋅ 𝐼 𝐵
𝐼 𝐼 𝐵
𝐵 𝐵 𝐼

⋅ 𝐼 𝐶
𝐼 𝐼 𝐶
𝐶 𝐶 𝐼

Figure 9: The three two-element subgroups.

13. One of the elements forms a one-element subgroup. Which is it?

The element 𝐼 forms the so-called trivial group, or the only group of order 1; this is shown in Figure 10. It is
not very interesting.

⋅ 𝐼
𝐼 𝐼

Figure 10: The trivial group.

14. The addition of two numbers is a binary operation, while the addition of three numbers is not. In
logic, ∧ (and) and ∨ (or) are binary operations, but ¬ (not) is not. Define binary operation in your
own words, and name some other binary operations.

(Answers may vary.)
A binary operation is an operation with two arguments.
Some binary operations:

1. multiplication

2. exponentiation

3. addition

4. subtraction

5. division

6. snap operation (∙)

15. In your original dihedral group table, what is

(a) the identity element?

The identity element is 𝐼 .

(b) the inverse of 𝐴?

The inverse of 𝐴 is also 𝐴, since it is a reflection.

(c) the inverse of 𝐸?

The inverse of 𝐸 is 𝐷, since −120◦ + 120◦ = 0◦.

17



4 Rotation and Reflection Groups

1. Notice that the original dihedral group had twice as many elements as the rotation group. Why?

(Answers may vary.)
There are a couple ways to think about this, but an intuitive way is to consider a “mirror world” of reflection

and the “normal world” where the orientation in normal. Here, orientation is not absolute orientation, but the
difference between clockwise and counterclockwise. For chemistry nerds, it is like chirality. Rotation preserves
orientation, but reflection does not. Instead, it takes us between these two “worlds.” Thus, it allows twice the
number of elements.

2. Make and justify a conjecture extending this observation to the dihedral groups of other shapes
like rectangles, squares, and hexagons, as well as the symmetry group of the cube.

(Answers may vary.)
Conjecture: The dihedral groups of a shape has twice the order of its rotation group.
Informal justification: A shape can be flipped or not, and it can have whatever rotational isometries applied

to it whether it’s flipped or not. Thus, the dihedral group allows for twice the number of elements as the rotation
group.

3. Let 𝑟 be a 180◦ rotation, 𝑥 be a reflection over the 𝑥-axis, and 𝑦 be a reflection over the 𝑦-axis.
Write a table for the dihedral group of the rectangle, recalling that the allowed isometries are
reflections and rotations. How does this table differ from the dihedral group of the equilateral
triangle?

⋅ 𝐼 𝑟 𝑥 𝑦
𝐼 𝐼 𝑟 𝑥 𝑦
𝑟 𝑟 𝐼 𝑦 𝑥
𝑥 𝑥 𝑦 𝐼 𝑟
𝑦 𝑦 𝑥 𝑟 𝐼

The table is shown above. The four elements are shown acting on a rectangle with “P” painted on it in Figure 1
to show the transformation a bit better.

𝐼 𝑦

𝑥 𝑟
Figure 1: A rectangle joyously rotates and flips around.

This differs from the dihedral group of the equilateral triangle, 𝐷3, in several ways. The most obvious is that
there are only 4 elements. Also, all elements besides 𝐼 in this group have a period of 2, while 𝐷3 has two
elements with a period of 3.

4. Write a table for the rotation group of the square, with 4 elements and 16 entries. Compare this
table to Problem 3.
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⋅ 𝐼 𝑟 𝑟2 𝑟3
𝐼 𝐼 𝑟 𝑟2 𝑟3
𝑟 𝑟 𝑟2 𝑟3 𝐼
𝑟2 𝑟2 𝑟3 𝐼 𝑟
𝑟3 𝑟3 𝐼 𝑟 𝑟2

The elements are 𝐼 = 𝑟0, 𝑟 = 𝑟90, 𝑟2 = 𝑟180, and 𝑟3 = 𝑟270. The table is shown above.
While this has the same order as the rectangle’s dihedral group, it has a different structure. There are two

elements with period 4 (𝑟, 𝑟3) and one element with period 2 (𝑟2).

For each of the following problems, find the following:

(a) The number of elements, also known as the order or cardinality

(b) If order < 10, name the set of elements; otherwise, explain how you know the order

(c) A smallest possible generating set; in other words, a list of elements which generate a group2

(d) Whether the group is commutative; in other words, whether its operation ⋅ satisfies 𝑋 ⋅ 𝑌 = 𝑌 ⋅ 𝑋 for
all 𝑋, 𝑌

5. Rectangle under rotation

(a) Number of elements

This group has two elements: the identity and the rotation of 180◦.

(b) If order < 10, the set of elements; otherwise, an explanation of how you know the order

As stated, they are the identity 𝐼 and the rotation 𝑟 of 180◦, as shown in Figure 2.

𝐴 𝐵

𝐶𝐷

𝐼
𝐶 𝐷

𝐴𝐵

𝑟
Figure 2: Rectangle under rotation.

(c) A smallest possible generating set

The smallest possible generating set is the singleton {𝑟}.

(d) Whether the group is commutative

The group is commutative, since it only contains rotations, which commute.

6. Rectangle under reflection

We already considered this group in Problem 3.

(a) Number of elements

There are 4 elements in this group.

(b) If order < 10, the set of elements; otherwise, an explanation of how you know the order

The elements are the identity 𝐼 , rotation 𝑟 by 180◦, reflection 𝑥 over the 𝑥 axis, and reflection 𝑦 over the 𝑦 axis.

(c) A smallest possible generating set

2There may be multiple generating sets of the same size.
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(Answers may vary.)
{𝑟, 𝑥}, {𝑟, 𝑦}, and {𝑥, 𝑦} all generate the group. No single element, however, can generate the group,

because it is not a cyclic group.

(d) Whether the group is commutative

This group may be manually verified to be commutative.

7. Square under rotation

Again, we have considered this group before.

(a) Number of elements

There are 4 elements.

(b) If order < 10, the set of elements; otherwise, an explanation of how you know the order

The elements are rotations 𝐼 = 𝑟0, 𝑟 = 𝑟90, 𝑟2 = 𝑟180, and 𝑟3 = 𝑟270.

(c) A smallest possible generating set

(Answers may vary.)
Both {𝑟} and {𝑟3} generate the group. 𝑟2 alone cannot generate the group, as it cannot achieve 𝑟 or 𝑟3.

(d) Whether the group is commutative

The group is commutative, since it is a cyclic group.

8. Square under reflection

(a) Number of elements

There are 8 elements in this group. We can quickly see this by noting that it is the dihedral group of the
square, which has twice the order of the rotation group of the square. We just found that had 4 elements, and
2 ⋅ 4 = 8.

(b) If order < 10, the set of elements; otherwise, an explanation of how you know the order

The elements are as follows:
Rotations 𝐼 = 𝑟0, 𝑟 = 𝑟90, 𝑟2 = 𝑟180, and 𝑟3 = 𝑟270; reflections 𝑓 = flip over the 𝑥-axis, 𝑓𝑟 = 𝑟 then 𝑓 , 𝑓𝑟2

and 𝑓𝑟3.
Recall that rotations can be generated by a sequence of two reflections.
Each of these elements is shown in Figure 3.

(c) A smallest possible generating set

(Answers may vary.)
Any pair of a rotation and flip will generate the set, except for {𝑟2, 𝑓𝑟2} and {𝑟2, 𝑓}; these will produce the

rectangle group instead. Any pair of two flips, except for {𝑓, 𝑓𝑟2}, will also work. As an example of both of
these categories, both {𝑟2, 𝑓𝑟3} and {𝑓, 𝑓𝑟} will generate the group. A single element cannot generate the
whole group, because the group is not cyclic.

(d) Whether the group is commutative

This group is not commutative. For example, 𝑓𝑟 = 𝑓𝑟, but 𝑟𝑓 = 𝑓𝑟3.

9. Square prism under rotation

This group is isomorphic to the dihedral group of the square in Problem 8.

(a) Number of elements
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𝐴 𝐵

𝐶𝐷

𝐼
𝐷 𝐴

𝐵𝐶

𝑟
𝐶 𝐷

𝐴𝐵

𝑟2
𝐵 𝐶

𝐷𝐴

𝑟3

𝐷 𝐶

𝐵𝐴

𝑓
𝐶 𝐵

𝐴𝐷

𝑓𝑟
𝐵 𝐴

𝐷𝐶

𝑓𝑟2
𝐴 𝐷

𝐶𝐵

𝑓𝑟3

Figure 3: Reflections of a square.

This question is a bit more difficult than the previous questions. We can rotate the prism about its central axis,
which an action analogous to just rotating a square: 4 elements. But we can also rotate the prism 180◦ on a
axis through the middle (pictures are shown in the next part). This action switches the top square face with
the bottom face, giving another 4 elements. In total, therefore, we have 8 elements.

(b) If order < 10, the set of elements; otherwise, an explanation of how you know the order

The set of elements are shown in Figure 4 below. Let 𝑎 be a rotation of 90◦ counterclockwise—as viewed
from the top—around the central axis, going through the centers of both square faces; let 𝑏 be a rotation of
180◦ around an axis going through the centers of faces □𝐴𝐵𝐵′𝐴′ and □𝐷𝐶𝐶 ′𝐷′.

(c) A smallest possible generating set

(Answers may vary.) The elements with 𝑏 in their name are equivalent to the reflections in the dihedral group
of the square. Thus, we need a “reflection” 𝑏𝑎𝑛 and a rotation 𝑎𝑚, or two separate reflections. All such pairs
work except for {𝑎2, 𝑏𝑎2}, {𝑎2, 𝑏} and {𝑏, 𝑏𝑎2}. An example from each category: {𝑎, 𝑏}, {𝑏, 𝑏𝑎}.

(d) Whether the group is commutative

This group is not commutative. For example, 𝑎𝑏 = 𝑏𝑎3 ≠ 𝑏𝑎, so 𝑎 and 𝑏 do not commute.

10. Square prism under reflection

(a) Number of elements

If the previous group—the rotation group of the square prism—had 8 elements, then this group should have
2 ⋅ 8 = 16 elements.

(b) If order < 10, the set of elements; otherwise, an explanation of how you know the order

We know the order because the previous group has 8 elements, and dihedral groups have twice the number
of elements of the rotation group, this group has 16 elements.

(c) A smallest possible generating set

(Answers may vary significantly.)
Since we could generate the previous group with (most) pairs of {𝑏𝑎𝑛, 𝑎𝑚}, or (most) pairs of {𝑎𝑛, 𝑎𝑚}, we

could just add another element 𝑐 which is a true geometric reflection about, say, the midplane 𝑃 between
□𝐷𝐶𝐷′𝐶 ′ and □𝐴𝐵𝐵′𝐴 as shown in Figure 5.

Thus, {𝑎, 𝑏, 𝑐} can generate the group. You can prove that two generators are impossible, but the proof
either requires making the group table or some more sophisticated abstract algebra. Intuitively, the proof
involves showing that there are three properties that each need to be permuted separately by some element—
a rotation, a reflection about a vertical axis, and a reflection about a horizontal axis. Note that no pair of these
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actions can generate the other. I will give a higher-level explanation for those who are well-versed in group
theory already, but it will probably be nonsense to most.

The rotation group generated by {𝑎, 𝑏} is 𝐷4. Define a new element 𝑑 which is the reflection through the
midplane 𝑃 between the two square faces.3 This is crudely shown in Figure 6; I couldn’t be bothered to make
a nicer figure. Then the reflection group generated by {𝑑} is 𝑍2. Furthermore, the operation sets {𝑎, 𝑏} and
{𝑑} are separable, in that 𝑎𝑥𝑏𝑦𝑑 = 𝑑𝑎𝑥𝑏𝑦 4. Thus, the group 𝐺 described in this problem is (isomorphic to)
the direct product:

𝐺 ≅ 𝐷4 ×𝑍2.

We wish to show that 𝑍2 ×𝑍2 ×𝑍2 is a quotient of this group. That is, we wish to find a normal subgroup 𝑁
such that

𝐺∕𝑁 = 𝑍2 ×𝑍2 ×𝑍2.

If this is true, then the minimal generating set of 𝐺 has at least cardinality 3. All that remains is to find 𝑁 and
𝐺∕𝑁 .

It suffices to show that 𝑍2 ×𝑍2 ⊲ 𝐷4, since then 𝑍2 ×𝑍2 ×𝑍2 ⊲ 𝐷4 ×𝑍2. We have |𝑍2 ×𝑍2| = 22 = 4,
so we want |𝐷4∕𝑁| = 4. We know |𝐷4| = 8, so by Lagrange’s theorem, |𝑁| = 2.
A normal subgroup of 𝐷4 is 𝑁 = {1, 𝑎2}. It is normal because for 𝑥 ∈ {0, 1, 2, 3} and 𝑦 ∈ {0, 1}:

3For the curious, 𝑑 = 𝑐𝑏𝑎2.
4This can be shown concretely by simply showing geometrically that 𝑎𝑑 = 𝑑𝑎 and 𝑏𝑑 = 𝑑𝑏.
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Figure 4: The elements of the rotation group of the rectangular prism.

(𝑏𝑥𝑎𝑦)𝑎2(𝑏𝑥𝑎𝑦)−1 = (𝑏𝑥𝑎𝑦)𝑎2(𝑎−𝑦𝑏−𝑥)

= 𝑏𝑥𝑎2+𝑦−𝑦𝑏−𝑥

= 𝑏𝑥𝑎2𝑏−𝑥

= 𝑏𝑥𝑏−𝑥𝑎2

= 𝑎2 ∈ {1, 𝑎2}.

The corresponding quotient group is

𝐷4∕𝑁 = {{1, 𝑎2}, {𝑎, 𝑎3}, {𝑏, 𝑏𝑎2}, {𝑏𝑎, 𝑏𝑎3}}.

We have the isomorphism {𝑏𝑥𝑎𝑦, 𝑏𝑥𝑎𝑦+2} ↔ (𝑥, 𝑦) under the operation of element-wise addition modulo 2.
After all,

{𝑏𝑥1𝑎𝑦1 , 𝑏𝑥1𝑎𝑦1+2} ⋅ {𝑏𝑥2𝑎𝑦2 , 𝑏𝑥1𝑎𝑦2+2} = {𝑏𝑥1+𝑥2𝑎𝑦1+𝑦2 , 𝑏𝑥1+𝑥2𝑎𝑦1+𝑦2+2}.

Therefore,
𝐷4∕𝑁 ≅ 𝑍2 ×𝑍2,

so
𝑍2 ×𝑍2 ×𝑍2 ⊲ 𝐷4 ×𝑍2 = 𝐺.

Since the minimal generating set of 𝑍2 ×𝑍2 ×𝑍2 is 3, 𝐺’s generating set has at least 3 elements. But we’ve
already found the set {𝑎, 𝑏, 𝑐} which generates 𝐺!5 Thus, it is minimal.

(d) Whether the group is commutative

As we found in the previous problem, the rotation group of the square prism is not commutative, and since
that’s a subgroup of this group, this group certainly isn’t commutative either.

11. Regular pentagon under rotation

(a) Number of elements

This group is just the cyclic group of order 5, so there are 5 elements.

(b) If order < 10, the set of elements; otherwise, an explanation of how you know the order
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reflection
⟶

Figure 5: 3D reflection over the midplane 𝑀 is 𝑐.

reflection
⟶

Figure 6: 𝑑 is the reflection through midplane 𝑃 .

The elements are rotations of 𝐼 = 𝑟0, 𝑟 = 𝑟72, 𝑟2 = 𝑟144, 𝑟3 = 𝑟216, 𝑟4 = 𝑟288. They are shown below.
Pentagons should always wear helmets, lest they want to damage their vertices.

(c) A smallest possible generating set

Any rotation by itself {𝑟𝑛} works, since 5 is a prime.

(d) Whether the group is commutative

The group is indeed commutative, since all operations are two-dimensional rotations. (Note that in 3D, how-
ever, rotations do not commute!)

12. Regular pentagon under reflection

(a) Number of elements

This is the dihedral group of the pentagon, which has 2 ⋅ 5 = 10 elements.

5{𝑎, 𝑏, 𝑑} also generates 𝐺.
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(b) If order < 10, the set of elements; otherwise, an explanation of how you know the order

We know the order because it should have twice the number of elements as the rotation group, which has 5
elements, giving 10 elements total.

(c) A smallest possible generating set

We can either do a rotation and a reflection or two reflections. Since 5 is prime, all pairs work (unlike for the
square). Let 𝑓 is a flip over the vertical axis. Examples of each are {𝑟, 𝑓} and {𝑓, 𝑓𝑟}.

(d) Whether the group is commutative

The group is not commutative. For example, 𝑓𝑟 = 𝑓𝑟, but 𝑟𝑓 = 𝑓𝑟4.

13. Regular pentagonal prism under rotation

This group is isomorphic to the dihedral group of the pentagon, which is Problem 12. The reason is the same
as for Problem 9’s dependence on 8—see that answer for details.

14. Regular pentagonal prism under reflection

This problem is akin to Problem 10.

(a) Number of elements

2 ⋅ 10 = 20.

(b) If order < 10, the set of elements; otherwise, an explanation of how you know the order

We know the order because the rotation group of the pentagonal prism has 10 elements, so its dihedral group
has 20 elements.

(c) A smallest possible generating set

If 𝑎 is a rotation of 72◦ about the central axis, 𝑏 is a rotation of 180◦ about a horizontal axis, and 𝑑 is a
reflection across the midplane between the two pentagonal faces, then {𝑎, 𝑏, 𝑑} generates the set, since
{𝑎, 𝑏} generates all rotations and 𝑑 turns them into their mirror images. But this isn’t the right answer.

Are there any smaller generating sets? We have 𝑎𝑑 = 𝑑𝑎 and 𝑏𝑑 = 𝑑𝑏 (you can verify this geometrically).
So to have a two element subgroup we likely need something like 𝑎𝑛𝑑 and 𝑏𝑎𝑚 for some integers 𝑛, 𝑚, so that
we can potentially generate 𝑎, 𝑏 and 𝑑.

Let’s try 𝑎𝑑 and 𝑏. Taking successive powers of 𝑎𝑑, we get

𝑎𝑑 = 𝑎𝑑

(𝑎𝑑)2 = 𝑎2

(𝑎𝑑)3 = 𝑎3𝑑

(𝑎𝑑)4 = 𝑎4

(𝑎𝑑)5 = 𝑎5𝑑 = 𝑑

(𝑎𝑑)6 = 𝑎

We’ve just generated 𝑑 and 𝑎 from 𝑎𝑑 alone! Since we have 𝑏 already, we have created {𝑎, 𝑏, 𝑑} from {𝑎𝑑, 𝑏}.
Thus, the smallest generating set has size 2. (We can’t have size 1 because then the group would be cyclic
and thus commutative, which this group certainly isn’t.)

This is a hard problem. Don’t worry if you didn’t get it.
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(d) Whether the group is commutative

The dihedral group of the pentagon is a subgroup of this group, and is not commutative, so this group is not
commutative.

15. Regular pentagonal pyramid under rotation

This is just isomorphic to the rotation group of the pentagon, or Problem 11.

16. Regular pentagonal pyramid under reflection

This is just isomorphic to the reflection group of the pentagon, or Problem 12.

17. Regular tetrahedron (triangular pyramid) under rotation

This is isomorphic to a subgroup of 𝑆4 (order 24), and has order 12. This group is actually called the alternating
group 𝐴4, and consists of even permutations of (1, 2, 3, 4). An even permutation is a permutation generated
by swapping an even number of pairs of elements. For example, (1, 2, 4, 3) is an odd permutation (involving
one swap), while (2, 1, 4, 3) is an even permutation (involving two swaps).6

(a) Number of elements

The snap group includes reflections, but this group does not: Thus, this group has 4!
2 = 12 elements.

(b) If order < 10, the set of elements; otherwise, an explanation of how you know the order

We know the order because this is the rotation group of a tetrahedron, and the reflection group of a tetrahedron
has 24 elements, so this groups must have half that count.

(c) A smallest possible generating set

Another difficult problem!
Let’s figure out where the rotation axes actually are. There are 4 axes going through a vertex—let’s call

these vertex axes 𝑣𝑖. There are also 3 axes going through the midpoints of opposite edges: let’s call these
edge axes 𝑒𝑖. These axes are enumerated and shown in Figure 7.

Figure 7: Regular tetrahedron’s succulent rotation axes.

We can rotate by 120◦ or 240◦ (counterclockwise as viewed from the vertex) about any 𝑣𝑖, but only by 180◦
about any 𝑒𝑖. Along with the identity, this gives all 2 ⋅ 4 + 3 + 1 = 12 elements.

To make manipulating these elements easier, treat them as permuting vertices in a list. We name this list
as shown in Figure 8. Thus, the identity element 𝐼 is (𝐴,𝐵, 𝐶,𝐷). A rotation of 240◦ around 𝑣𝐴 swaps vertices
in positions (3 4) then (2 3), so 𝑣𝐴 = (𝐴,𝐷,𝐵, 𝐶) as shown in Figure 9.
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Figure 8: Regular tetrahedron’s indices. Figure 9: 𝑣𝐴 = (𝐴,𝐷,𝐵, 𝐶).

If we take a look at an edge rotation, say 𝑒1, you will see it also swaps two vertices: in this case, (3 4)
and (1 2). In general, any edge rotation or vertex rotation will swap two vertices—you can see this by plain
symmetry or if you want, working it out for each rotation.
We now have a more abstract representation of this group: namely, it is the group of even permutations of
(𝐴,𝐵, 𝐶,𝐷). For example, (𝐵,𝐴,𝐷, 𝐶) is even, but (𝐴,𝐵,𝐷, 𝐶) is not. The group operation is composing two
permutations by chaining them together. Note that the identity, (𝐴,𝐵, 𝐶,𝐷) is considered even, just as 0 is
considered even.

One element is clearly not enough, because this group is not cyclic. Can we do it in two elements though?
Consider two vertex rotations, which cycle (without loss of generality) the first three vertices and the

last three vertices. That is, 𝑎 = (3, 1, 2, 4) and 𝑏 = (1, 4, 2, 3). Can we get every even permutation with
combinations of 𝑎 and 𝑏? Let’s try list them out:

𝑎 = (3, 1, 2, 4), 𝑎2 = (2, 3, 1, 4), 𝑎3 = 𝐼 = (1, 2, 3, 4), 𝑏 = (1, 4, 2, 3),

𝑏2 = (1, 3, 4, 2), ��𝑏3 = 𝐼 = 𝑎3, 𝑎𝑏 = (2, 1, 4, 3), 𝑎𝑏2 = (4, 1, 3, 2),

𝑎2𝑏 = (4, 2, 1, 3), 𝑎2𝑏2 = (3, 4, 1, 2), ��𝑏𝑎 = 𝑎2𝑏2, 𝑏2𝑎 = (3, 2, 4, 1),

𝑏𝑎2 = (2, 4, 3, 1), ���𝑏2𝑎2 = 𝑎𝑏, ��𝑏𝑎𝑏 = 𝑎2, ���𝑏2𝑎𝑏 = 𝑏𝑎2,

���𝑏𝑎𝑏2 = 𝑎2𝑏, 𝑏2𝑎𝑏2 = (4, 3, 2, 1) = 𝑏𝑎2𝑏

We have successfully generated all 12 elements with the set {𝑎, 𝑏}. Thus, a two element generating set is
sufficient! Interestingly, this means you can turn a tetrahedron however you want by holding it at two corners
and twisting it with each.

For the curious, this group is the alternating group 𝐴4.

(d) Whether the group is commutative

The group is clearly not commutative, since 𝑎𝑏 ≠ 𝑏𝑎. Unlike in two dimensions, rotations in 3D generally do
not commute!

18. Regular tetrahedron under reflection

This is just the snap group of order 4, 𝑆4.

(a) Number of elements

As we found in the first problem, 𝑆4 has 4! = 24 elements.

(b) If order < 10, the set of elements; otherwise, an explanation of how you know the order

As we found in the first problem, 𝑆4 has 4! = 24 elements.

(c) A smallest possible generating set

This problem is tricky.
The obvious thing to do is keep {𝑎, 𝑏} from the previous problem and add some reflection 𝑐. Then {𝑎, 𝑏, 𝑐}

has all 24 elements, since {𝑎, 𝑏} makes 12 elements and 𝑐 makes a copy of each “in the mirror world.” This is
not, however, the right answer.

6The parity of a permutation is of great importance in group theory; Wikipedia has a decent article on the topic.
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A generating of 2 elements is actually possible! There are several ways to see this, but I find a permutation
argument easiest to follow.

𝑆4 is not just the reflection group of the tetrahedron, but also the group of all permutations of (1, 2, 3, 4).
Consider the permutation 𝑗 = (4, 1, 2, 3), which cycles all the elements, and the permutation 𝑘 = (2, 1, 3, 4),
which swaps the first elements. Then

𝑗 = (4, 1, 2, 3), 𝑗2 = (3, 4, 1, 2), 𝑗3 = (2, 3, 4, 1), 𝑗4 = 𝐼 = (1, 2, 3, 4).

We can flip any two adjacent elements (as well as the first and last elements) by doing the following:

1. Cycle using powers of 𝑗 until the two elements in question are the first two elements.

2. Swap them with an application of 𝑘.

3. Cycle back to the starting position with powers of 𝑗.

In more mathematical terms, we can swap indices 𝑖 and 𝑖 + 1, where 1 ≤ 𝑖 ≤ 3, with the following element.

𝑗𝑖−1𝑘𝑗5−𝑖.

Intuitively, if you can swap any two adjacent elements, you can make any permutations—not just the even
ones—and thus generate the full group.

Let’s see what the elements 𝑗 and 𝑘 actually are, operating on the tetrahedron.

𝐼 𝑗 𝑘

Figure 10: The two elements 𝑗 and 𝑘 generate the full symmetry group of the tetrahedron.

Thus, the true minimal generating set is {𝑗, 𝑘} as described.

(d) Whether the group is commutative

This group is certainly not commutative, since the previous group from Problem 17 was not commutative and
is a subgroup of this group.

19. Cube under rotation

There are a couple ways to analyze this. My favorite one is to choose a face to make the top face, which can
be done in 6 ways, then choose which rotation that face should be in, which can be done in 4 ways.

(a) Number of elements

Since we choose a front face in 6 ways, and its rotations in 4 ways, we have 6 ⋅ 4 = 24 total rotations.

(b) If order < 10, the set of elements; otherwise, an explanation of how you know the order

The order is found above.

(c) A smallest possible generating set
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Figure 11: Marking opposite pairs of vertices.

This problem is tough without a simplifying observation. If we label space-diagonally opposite vertices (in
other words, vertices which don’t share a face) with the same number, as shown in Figure 11, then we can
easily enumerate valid rotations.

The front face starts off saying “1,2,3,4.” I claim that the 4! permutations of these four labels on the front
face yields every rotation, and only rotations.

First, note that you will always see the numbers “1,2,3,4“ in some order on the front face; you cannot see
two of one number because all numbers are placed on diagonals of each other, and never share a side.

Second, note that the list of four numbers on the front face uniquely determines the other labels, since
each has exactly one pair on the back face. For example, if there is a 3 in the closest corner to the camera,
then there must be a 3 in the furthest corner of the camera.

Third, we demonstrate that the permutation of labels can always be represented as a rotation. There
are six fundamentally different types of label squares under rotation rotation, as shown in Figure 12. But all
appear somewhere as a face on the cube, as shown in Figure 13.

1 2

43

𝛼

2 3

14

𝛽

3 4

21

𝛾

4 1

32

𝛿

1 4

32

𝜖

3 2

14

𝜁

Figure 12: The six different labelings of a square. Figure 13: The six different label-
ings indeed appear on the cube!

We have demonstrated that every permutation of the front face labels creates a unique orientation of the
cube, and that each such orientation is a rotation. Since there are 24 unique permutations and 24 unique
rotations, every rotation has exactly one corresponding permutation and vice versa. We can now construct an
isomorphism! The set of label permutations under the operation of composing permutations (as we did with
the tetrahedron) and the set of rotations under the operation of composing rotations are isomorphic.

So the group of rotations of a cube is actually 𝑆4, the permutation group of 4 elements. (I find this fact
incredible.)

Back to the main question: what is the minimal generating set? In the previous question, we found that
the permutations (4, 1, 2, 3)—cycling all elements forward—and (2, 1, 3, 4)—swapping the first two elements—
generate 𝑆4. For the cube, those are two rotations 𝑎 and 𝑏 as shown in Figure 14.

(d) Whether the group is commutative

This group is not commutative, since 𝑆4 is not commutative.

20. Cube under reflection
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𝑎 𝑏

Figure 14: The two rotations 𝑎 and 𝑏.

(a) Number of elements

There are 24 elements in the rotation group of the cube, so naturally there are 48 elements in the reflection
group.

(b) If order < 10, the set of elements; otherwise, an explanation of how you know the order

For each of the 24 rotations of the cube, there is also a reflected version over some plane. This gives 2⋅24 = 48
total elements in this group.

(c) A smallest possible generating set

If 𝑐 is a reflection about, say, the origin of the cube, then {𝑎, 𝑏, 𝑐} (where 𝑎, 𝑏 are the rotations from before)
would generate the whole group, since {𝑎, 𝑏} generates all rotations and {𝑐} generates their respective re-
flections. But can we do it in two?

The answer is yes! The proof is not mine, because I couldn’t figure it out, but due to math.SE user verret.
It does require some more advanced concepts, so it is probably inaccessible to most.

The group we’ve been analyzing is 𝑆4×𝑍2. Let 𝑆4 be permuting elements {1, 2, 3, 4} and 𝑍2 be permuting
elements {5, 6} (note that 𝑍2 = 𝑆2). Then given two elements 𝑔 = (4, 1, 2, 3, 5, 6) in our notation, meaning
that indices (1, 2, 3, 4) are cycled, and ℎ = (3, 1, 2, 4, 6, 5), meaning that indices (1, 2, 3) and (5, 6) are cycled,
we can construct the group.

Note that ℎ2 = (2, 3, 1, 5, 6) is in 𝑆4, since it does not permute indices 5, 6. It has a period of 3, and thus
generates a subgroup of order 3. Furthermore, ℎ3 only permutes (5, 6). Furthermore, 𝑔 is an element in 𝑆4
and has a period of 4. Thus, since gcd(3, 4) = 1, by Lagrange’s theorem we know that {ℎ2, 𝑔} generates a
subgroup of 𝑆4 of at least order 3 ⋅ 4 = 12.

The only such subgroup, besides 𝑆4 itself, is the alternating group 𝐴4. But 𝑔 is outside of 𝐴4, since it is an
odd permutation:

(1, 2, 3, 4 ) → (1, 2, 4 , 3) → ( 1, 4 , 2, 3) → (4, 1, 2, 3).

Thus, {ℎ2, 𝑔} does not generate 𝐴4, and must generate 𝑆4. Adding ℎ3, the generator for 𝑍2, to this set
gives the full 𝑆4, 𝑍2. The minimal generating set is therefore {𝑔, ℎ} as defined.

For the curious, using our vertex “labeling” convention as before, the elements 𝑔 and ℎ are shown in
Figure 15.

(d) Whether the group is commutative

The subgroup of rotations of the cube, 𝑆4, is not commutative, so this group is definitely not commutative.
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𝐼 𝑔 ℎ

Figure 15: Elements 𝑔 and ℎ. Note that ℎ is not solely a reflection about a mirror plane, but actually a
combination of a rotation and reflection: a so-called rotoreflection!
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5 Infinite Groups

Note: an injection 𝑓 is a function taking 𝐴 into 𝐵 such that for all 𝑎 ∈ 𝐴, 𝑓 (𝑎) ∈ 𝐵 and 𝑓 (𝑎) is unique. In
other words, there are no two 𝑎1, 𝑎2 ∈ 𝐴, 𝑎1 ≠ 𝑎2 such that 𝑓 (𝑎1) = 𝑓 (𝑎2).

1. Where have you come across the roots iso- and -morphic before?

(Answers may vary.)
Iso- is a root meaning equal. You might have seen it in isometry, isometric (paper), isomer, isosceles,

isotonic, isotropy, and isotope. Morph means “form” or “shape.” You might have seen it in metamorphosis,
amorphous, anthropomorphism, or morpheme.

2. Can two groups be isomorphic if they have different orders?

No. Suppose we have groups 𝐴 and 𝐵 such that |𝐴| > |𝐵| (𝐴 is bigger than 𝐵). Then we can’t have a
one-to-one correspondence between the elements of 𝐴 and 𝐵, because there will always be elements in 𝐴
without a “partner” in 𝐵. Thus, they cannot be isomorphic.

3. The rotation group of the regular hexagon, also known as the cyclic group of order 6, 𝐶6, has six
elements: the identity, and rotations of 𝜋

3 , 2𝜋
3 , 𝜋, 4𝜋

3 , 5𝜋
3 radians. A rotation of 𝜋

3 generates the
group.

(a) Which other rotation can generate the group?

The other rotation which generates the group is 5𝜋
3 , because 5 is coprime with 6. This is necessary because

otherwise a subgroup of the full 𝐶6 is formed. For example, 2𝜋
3 generates

{

0, 2𝜋
3
, 4𝜋
3

}

,

which is merely 𝐶3. Lame!

(b) What is the period of each element?

0 or 𝐼 ∶ 1
𝜋
3
∶ 6

2𝜋
3

∶ 3

𝜋 ∶ 2
4𝜋
3

∶ 3

5𝜋
3

∶ 6

4. 𝐶6 has the same number of elements as the dihedral group 𝐷3.

(a) Are the two groups isomorphic? How do you know?

No, the two groups are not isomorphic, although they are the same size. An easy way to see this is that 𝐷3
has three reflections, which have period 2, but 𝐻 only has one element of period 2.

(b) What is the period of each element of 𝐷3?

𝐼 ∶ 1
𝑟 ∶ 3

𝑟2 ∶ 3
𝑓 ∶ 2
𝑓𝑟 ∶ 2

𝑓𝑟2 ∶ 2
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(c) What can you say if the sets of the periods of the elements of each group are not the same?

If the periods of each group can’t be paired up, then the elements cannot be paired up either; after all,
isomorphism is a structure-preserving operation. Thus, the two groups are not isomorphic.

(d) Which subgroups of the cyclic group 𝐶6 and 𝐷3 are isomorphic?

One is 𝐶2, which is {0, 𝜋} in 𝐶6 and {𝐼, any reflection} in 𝐷3. The other nontrivial one is 𝐶3, which is
{

0, 2𝜋3 , 4𝜋3
}

in 𝐶6 and {𝐼, any rotation} in 𝐷3. Both also have the trivial subgroup {𝐼} of just the identity
element.

5. Could an infinite group and a finite group be isomorphic?

No, because their sizes are not the same; a one-to-one correspondence cannot be constructed.

6. Do you think all infinite groups are isomorphic to each other? Find a counterexample if you can.

Not all infinite groups are isomorphic. For example, the set of rotations about the origin has only one element
of period 2, namely 𝑟180◦ . But the set of reflections about the origin has infinitely many elements of period 2.
Both, however, are infinite in size.

7. Make guesses to the relative sizes of the following pairs of sets. You may use shorthand like
|𝑎| < |𝑏|, |𝑎| > |𝑏|, |𝑎| = |𝑏|. After you have made your guesses, we will analyze some of the
cases and you can find out how good your intuition was.

(Answers may vary, but the “correct” answers are shown.)

(a) natural numbers, ℕ vs. positive even numbers, 2ℕ

|ℕ| = |2ℕ|

(b) natural numbers, ℕ vs. positive rational numbers, ℚ+

|ℕ| = |

|

ℚ+
|

|

(c) natural numbers, ℕ vs. real numbers between zero and one, [0, 1)

|ℕ| < |[0, 1)|

(d) real numbers, ℝ vs. complex numbers, ℂ

|ℝ| = |ℂ|

(e) real numbers, ℝ vs. points on a line

|ℝ| = |points on a line|

(f) points on a line vs. points on a line segment

|points on a line| = |points on a line segment|

(g) points on a line vs. points on a plane

|points on a line| = |points on a plane|

(h) rational numbers, ℚ vs. Cantor set (look this up or ask your teacher)

|𝑄| < ||

8. Now, please return to Problem 7 and revise your answers. Justify each answer by producing
a one-to-one correspondence, or showing the impossibility of doing so. Part (h) is an optional
challenge.
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(a) natural numbers, ℕ vs. positive even numbers, 2ℕ

This one is pretty straightforward. We have the following injection from ℕ to 2ℕ:

𝑠 ∈ ℕ → 2𝑠 ∈ 2ℕ.

We have the following injection from 2ℕ to ℕ:

𝑠 ∈ ℕ →
𝑠
2
∈ ℕ.

Since we can go both ways, we have |ℕ| = |2ℕ|, even though ℕ ⊂ 2ℕ (ℕ is a subset of 2ℕ).7

(b) natural numbers, ℕ vs. positive rational numbers, ℚ+

Surprisingly, we can make a one-to-one correspondence. If we list out the positive rationals in reduced form
( 𝑝𝑞 with 𝑝, 𝑞 coprime), ordered by increasing denominator, we can create the correspondence:

ℚ+ 0
1

1
1

1
2

2
1

1
3

3
1

1
4

2
3

3
2

4
1

⋯

↕ ↕ ↕ ↕ ↕ ↕ ↕ ↕ ↕ ↕ ⋯

ℕ 1 2 3 4 5 6 7 8 9 10 ⋯

More details of this construction are given later in the textbook chapter. In any case, |
|

ℚ+
|

|

= |ℕ|.

(c) natural numbers, ℕ vs. real numbers between zero and one, [0, 1)

A one-to-one correspondence cannot exist between these two sets, so |ℕ| < |[0, 1)|. The classic proof of this
is Cantor’s diagonal argument, which is given in the textbook.

(d) real numbers, ℝ vs. complex numbers, ℂ

This is a pretty tough problem to do in a logically sound way. The key is to represent complex numbers 𝑎 + 𝑏𝑖
as the ordered pair (𝑎, 𝑏) where 𝑎, 𝑏 ∈ ℝ. The set of all (𝑎, 𝑏) is denoted ℝ2.

Here is the route we will take:

1. Construct a one-to-one correspondence between the interval [0, 1) and ℝ.

2. Use (1) to construct a similar correspondence between [0, 1)2 and ℝ2. That is, we will construct a
correspondence between ordered pairs of reals in [0, 1) and ordered pairs of any reals.

3. We find an injection from [0, 1) into [0, 1)2.

4. We find an injection from [0, 1)2 into [0, 1). This shows there is a one-to-one correspondence between
[0, 1) and [0, 1)2.

5. We “chain” the correspondences together:

ℝ ↔ [0, 1) ↔ [0, 1)2 ↔ ℝ2.

Step 1: The most straight forward way to do this is to show there is an injection from [0, 1) into ℝ, and vice
versa.8 We have 𝑓 (𝑥) = 𝑥 as a straightforward injection from [0, 1) into ℝ, and the logistic function

𝑔(𝑥) = 1
1 + 𝑒−𝑥

as an injection 𝑔 ∶ ℝ → [0, 1). (In fact, the range of the logistic function is only (0, 1).) Thus, there exists a
one-to-one correspondence 𝐻 between ℝ and [0, 1).

Step 2: If 𝐻 is the function from Step 1, we have

𝐽 (𝑎, 𝑏) = (𝐻(𝑎),𝐻(𝑏))

7We didn’t explicitly state it because it’s pretty intuitive, but this is using the Cantor-Schröder-Bernstein theorem (CSB).
8Again, this uses the Cantor-Schröder-Bernstein theorem.
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as a one-to-one correspondence between ℝ2 and [0, 1)2.
Step 3: An injection from [0, 1) into [0, 1)2 is straightforward:

𝑘1(𝑥) = (𝑥, 0).

Step 4: An injection from [0, 1)2 into [0, 1) is more challenging. One idea is to interleave digits like so:

(0.123456789..., 0.314159265)
𝑘2
→ 0.132134415569728695...

The main issue with this construction is that the two representations of 0.5 = 0.4999... give two different
outputs, so this mapping isn’t even a proper function:

(0.5, 0.0) → 0.50

(0.499..., 0.0) → 0.409090... ≠ 0.50.

The easiest thing to do here is arbitrarily choose one of these mappings. In particular, we represent a number
with an infinite sequence of trailing zeroes 0.𝑎1𝑎2⋯ 𝑎𝑛00000... with the numerically equivalent

0.𝑎1𝑎2⋯ (𝑎𝑛 − 1)9999....

Now, our function 𝑘2 is a true injection, since 𝑘(𝑎, 𝑏) ∈ [0, 1) for all (𝑎, 𝑏) ∈ [0, 1)2 and 𝑘(𝑎1, 𝑏1) ≠ 𝑘(𝑎2, 𝑏2) for
(𝑎1, 𝑏1) ≠ (𝑎2, 𝑏2).

Step 5: We have constructed an injection 𝑘1 from [0, 1) → [0, 1)2 and an injection 𝑘2 from [0, 1)2 → [0, 1).
Thus, there exists a one-to-one correspondence 𝐾 between [0, 1) and [0, 1)2.

We chain the correspondences, finally proving that there exists a one-to-one correspondence between ℝ
and ℝ2:

ℝ
𝐻
↔[0, 1)

𝐾
↔[0, 1)2

𝐽
↔ℝ2.

Thus, |ℝ| = |

|

|

ℝ2|
|

|

. Fascinating! The philosophical interpretation of this mathematical statement is up for
debate.

(e) real numbers, ℝ vs. points on a line

This problem is pretty straightforward if you think of points on a line as points on a number line. We arbitrarily
choose a point on the line for 0 and a point for 1. In this regime, each point on the line corresponds with a
unique real number. Thus, |ℝ| = |points on a line|.

(f) points on a line vs. points on a line segment

The simplest way to do this is, once again, to show there is an injection in each direction. We can go from
segment to line by observing that a segment is just a subset of a line. We can go from line to segment by
representing each point as a real number ℝ as we already did, then taking the logistic function

𝑓 (𝑥) = 1
1 + 𝑒−𝑥

which turns that point into a real number in the interval (0, 1). This can be mapped onto the line segment by
simply choosing one endpoint to be 0 and the other to be 1.

|points on a line segment| = |points on a line|

(g) points on a line vs. points on a plane

We can represent points on a line, as usual, with ℝ. We can represent points on a plane by arbitrarily choosing
non-collinear points for (0, 0), (1, 0) and (0, 1) and letting this be a coordinate space where points (𝑎, 𝑏) are
expressed as

𝑎 < 1, 0 > +𝑏 < 0, 1 > .

Note that the two vectors don’t have to be perpendicular. This shows that we can represent points on a plane
by ℝ2. But we’ve already proved |

|

|

ℝ2|
|

|

= |ℝ|! Thus,

|points on a plane| = |points on a line| .
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(h) rational numbers, ℚ vs. Cantor set (look this up or ask your teacher)

The Cantor set  is formed by iteratively deleting the open middle third of segments, starting with the unit

segment. We start with the interval [0, 1], then split it into two intervals:
[

0, 13
]

and
[

2
3 , 1

]

. This set, let’s call

it 1, has total length 2
3 . We split up each of 1’s intervals again, forming 2 =

[

0, 19
]

∪
[

2
9 ,

1
3

]

∪
[

2
3 ,

7
9

] [

8
9 , 1

]

.

Note what happened here: the first interval in 1 had its middle third deleted, splitting it into our first two
intervals; and the same with the second interval. 2 has total length 4

9 . We repeat this process to infinity, so

that (informally speaking) ∞ = , the Cantor set. The set has total length 0, but it’s not empty! 0, 1
3 , and 7

9
are all members of , for example.
For a visual, the construction is shown in Figure 1.

0 1
1
3

2
3

𝐶1

𝐶2

𝐶3

𝐶4

𝐶5

⋮
↓



𝐿 𝑅

𝐿′ 𝑅′

Figure 1: The construction of the Cantor set .

How do we attack this problem? It’s not immediately clear how to tell whether a number 𝑥 is in . It’s not

something as simple as 𝑝
3𝑛 for some integers 𝑝, 𝑛, because 4

9 is in the deleted interval
[

1
3 ,

2
3

]

, and is not in
. We should represent the set as something we know how to deal with, keeping in mind that answering our
question of cardinality only involves making a one-to-one correspondence, not a complete description of the
set.

Consider how we would choose a random point in . Starting at 𝐶1, we can either go to the left segment

or the right segment (marked as 𝐿 and 𝑅 in Figure 1). If we choose 𝐿, which is
[

0, 13
]

, then we once again

have 2 choices: to go to 𝐿′, which is
[

0, 19
]

, or 𝑅′, which is
[

2
9 ,

1
3

]

. This continues forever, and every element

of  can be uniquely obtained this way. Thus, we can correspond each element 𝑥 ∈  with a binary number
in the interval [0, 1].

As an example, suppose we choose segments in the sequence 𝐿𝑅𝑅𝐿𝐿𝐿𝑅𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿... with infinite
trailing 𝐿’s. Then the corresponding binary number is

0.011000102 =
39
128

∈ [0, 1].

Thus, we have a one-to-one correspondence between the elements of  and [0, 1].9 The question is asking
the relative sizes of ℚ and . We already know (by Cantor’s diagonal argument or otherwise) that |ℚ| <
|[0, 1]|. Therefore, we have

|ℚ| < |[0, 1]| = || ⟹ |ℚ| < ||.

This might be counterintuitive, that a set with "length" 0 is still bigger than all the rational numbers on the great
big number line. Frankly, without some formal language (particularly from topology), it’s hard to describe this
set with any rigor. The Wikipedia article on the Cantor set may guide you further!

9. Here’s a list of infinite sets, each with an operation. For each pair, answer: (i) Does it form a
group? (ii) Which previous group(s) is it isomorphic to?

(a) natural numbers, addition
9Note it is inclusive because 0.12 = 1 and 0.02 = 0.
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i. Does it form a group?

Nope! It cannot satisfy the identity, since for 𝑥 + 𝐼 = 𝐼 + 𝑥 = 𝐼 to be true for all 𝑥 we need 𝐼 = 0. If you’re a
fan of the standard ISO 80000, and include 0 ∈ ℕ, then it still doesn’t form a group, since it can’t satisfy the
invertibility property. For example, the inverse of 1 should be −1 so that 1 + (−1) = 0, but −1 ∉ ℕ.

ii. Which previous group(s) is it isomorphic to?

Not a group, oof.

(b) integers, addition

i. Does it form a group?

It does form a group. The identity element is 0, and it satisfies all necessary properties:
Identity: 𝑥 + 0 = 0 + 𝑥 = 𝑥.
Closure: If 𝑥, 𝑦 ∈ ℤ, then 𝑥 + 𝑦 ∈ ℤ.
Associativity: We have 𝑥 + (𝑦 + 𝑧) = (𝑥 + 𝑦) + 𝑧 for all 𝑥, 𝑦, 𝑧 ∈ ℤ.
Inverse: The inverse of 𝑥 is −𝑥, since 𝑥 + (−𝑥) = (−𝑥) + 𝑥 = 0.

ii. Which previous group(s) is it isomorphic to?

None, I wonder why.

(c) even integers, addition

i. Does it form a group?

It does form a group. The identity element is 0, and it satisfies all necessary properties:
Identity: 𝑥 + 0 = 0 + 𝑥 = 𝑥.
Closure: If 𝑥, 𝑦 ∈ 2ℤ, then 𝑥 + 𝑦 = 2𝑠 + 2𝑡 = 2(𝑠 + 𝑡) ∈ 2ℤ.
Associativity: We have 𝑥 + (𝑦 + 𝑧) = (𝑥 + 𝑦) + 𝑧 for all 𝑥, 𝑦, 𝑧 ∈ 2ℤ.
Inverse: The inverse of 𝑥 is −𝑥, since 𝑥 + (−𝑥) = (−𝑥) + 𝑥 = 0.

ii. Which previous group(s) is it isomorphic to?

It is isomorphic to integers under addition, because we can simply correspond 2𝑛 ∈ 2ℤ with 𝑛 ∈ ℤ. All the
group structure is preserved, since 2𝑚 + 2𝑛 ∈ 2ℤ corresponds with 𝑚 + 𝑛 ∈ ℤ.

(d) odd integers, addition

i. Does it form a group?

This does not form a group, since it cannot satisfy the identity property. There is no odd integer 𝐼 such that
𝑥 + 𝐼 = 𝐼 + 𝑥 = 𝑥.

ii. Which previous group(s) is it isomorphic to?

Not a group, oof.

(e) rational numbers, addition

i. Does it form a group?

Yes, this forms a group with identity element 0. It satisfies all necessary properties:
Identity: 𝑝

𝑞 + 0 = 0 + 𝑝
𝑞 = 𝑝

𝑞 .

Closure: If 𝑝1
𝑞1
, 𝑝2𝑞2

∈ ℚ, then

𝑝1
𝑞1

+
𝑝2
𝑞2

=
𝑝1𝑞2 + 𝑝2𝑞1

𝑞1𝑞2
∈ ℚ.

Associativity: We have 𝑥 + (𝑦 + 𝑧) = (𝑥 + 𝑦) + 𝑧 for all 𝑥, 𝑦, 𝑧 ∈ 2ℤ.
Inverse: The inverse of 𝑝

𝑞 is − 𝑝
𝑞 , since

𝑝
𝑞
+
(

−
𝑝
𝑞

)

=
(

−
𝑝
𝑞

)

+
𝑝
𝑞
= 0.
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ii. Which previous group(s) is it isomorphic to?

None. It’s not isomorphic to integers under addition because for each element 𝑥 ∈ ℚ, there exists an element
𝑦 = 𝑥

2 ∈ ℚ such that

𝑦 + 𝑦 = 𝑥.

This is impossible for any odd integers (analogously, for the group of even integers under addition, impossible
for any elements not divisible by 4).

(f) real numbers, addition

i. Does it form a group?

Yes, this forms a group with identity element 0. It satisfies all necessary properties:
Identity: 𝑥 + 0 = 0 + 𝑥 = 𝑥.
Closure: If 𝑥, 𝑦 ∈ ℝ, then 𝑥 + 𝑦 ∈ ℝ.
Associativity: We have 𝑥 + (𝑦 + 𝑧) = (𝑥 + 𝑦) + 𝑧 for all 𝑥, 𝑦, 𝑧 ∈ ℝ.
Inverse: The inverse of 𝑥 is −𝑥, since 𝑥 + (−𝑥) = (−𝑥) + 𝑥 = 0.

ii. Which previous group(s) is it isomorphic to?

None. After all, ℝ is uncountable, while the groups we’ve seen so far are countable.

(g) complex numbers, addition

i. Does it form a group?

Yes, this forms a group with identity element 0 = 0 + 0𝑖. It satisfies all necessary properties:
Identity: 𝑥 + 0 = 0 + 𝑥 = 𝑥.
Closure: If 𝑥, 𝑦 ∈ ℂ, then 𝑥 + 𝑦 ∈ ℂ.
Associativity: We have 𝑥 + (𝑦 + 𝑧) = (𝑥 + 𝑦) + 𝑧 for all 𝑥, 𝑦, 𝑧 ∈ ℂ.
Inverse: The inverse of 𝑥 is −𝑥, since 𝑥 + (−𝑥) = (−𝑥) + 𝑥 = 0.

ii. Which previous group(s) is it isomorphic to?

Since ℂ is uncountable, ℝ under addition is the only candidate. Assuming the axiom of choice,10 they are
actually isomorphic.

Proving they are isomorphic is tough11 without the introduction of vector spaces and related gadgets
(specifically, Hamel bases). If you’re really curious, check out https://math.stackexchange.com/a/1511685/677124
for a mildly accessible view of the subject... if you already understand the basics of infinite-dimensional vector
spaces. In summary, both ℝ and ℝ2 are vector spaces over the rational numbers ℚ, and since |ℝ| = |ℝ2

|

they are isomorphic as vector spaces. This also implies that they are isomorphic as additive groups, although
such an isomorphism can’t really be written down.

(h) integers, multiplication

i. Does it form a group?

No, they do not form a group. The identity element would be 1, so that 1 ⋅ 𝑥 = 𝑥 ⋅ 1 = 𝑥, but 1 ⋅ 0 = 0 ≠ 1, so it
cannot satisfy invertibility. Even if we removed 0, for any 𝑝 ≠ ±1 there is no integer 𝑞 such that 𝑝𝑞 = 1.

ii. Which previous group(s) is it isomorphic to?

Not a group, oof.

(i) integer powers of 2, multiplication

i. Does it form a group?

10The axiom of choice states that for every indexed family of sets (𝑆𝑖)𝑖∈𝐼 , where 𝑆𝑖 ≠ ∅, there exists an indexed family of elements
(𝑥𝑖)𝑖∈𝐼 such that 𝑥𝑖 ∈ 𝑆𝑖 for all 𝑖 ∈ 𝐼 . Intuitively, this means that given a list of non-empty sets, you can select exactly one item from each
set.

11In fact, it is impossible to construct an “explicit” isomorphism because ℝ ≇ ℂ is consistent with the axiom of choice.
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Yes! Let the group be called  = {2𝑥 ∶ 𝑥 ∈ ℤ} for fun. The identity element is 20 = 1. The group properties
are satisfied:

Identity: 2𝑥 ⋅ 1 = 1 ⋅ 2𝑥 = 2𝑥.
Closure: 2𝑥 ⋅ 2𝑦 = 2𝑥+𝑦 ∈  .
Associativity: We have 2𝑥(2𝑦 ⋅ 2𝑧) = (2𝑥 ⋅ 2𝑦)2𝑧 = 2𝑥+𝑦+𝑧 for all 𝑥, 𝑦, 𝑧 ∈ ℤ.
Inverse: The inverse of 2𝑥 is 2−𝑥, since 2𝑥2−𝑥 = 2−𝑥2𝑥 = 20 = 1.

ii. Which previous group(s) is it isomorphic to?

It is isomorphic to the integers under addition. 2𝑛 ∈  corresponds with 𝑛 ∈ ℤ, since we have

2𝑚 ⋅ 2𝑛 = 2𝑚+𝑛 ↔ 𝑚 + 𝑛.

(j) rational numbers, multiplication

i. Does it form a group?

The rational numbers under multiplication do not form a group; the identity element must be 1, but then 0
would not have an inverse since nothing times 0 is 1.

ii. Which previous group(s) is it isomorphic to?

Not a group, oof.

(k) rational numbers excluding 0, multiplication

i. Does it form a group?

Yes! The rational numbers excluding 0, written ℚ ⧵ 0, form a group under multiplication with identity element
1. The group properties are satisfied:

Identity: 𝑥 ⋅ 1 = 1 ⋅ 𝑥 = 𝑥.
Closure: If 𝑥, 𝑦 ∈ ℚ ⧵ 0, then 𝑥 ⋅ 𝑦 ∈ ℚ ⧵ 0; the product of two nonzero rational numbers is rational and

nonzero.
Associativity: We have 𝑥(𝑦𝑧) = (𝑥𝑦)𝑧 for all 𝑥, 𝑦, 𝑧 ∈ ℚ ⧵ 0.

Inverse: The inverse of 𝑥 ∈ ℚ ⧵ 0 is 1
𝑥 , since 𝑥

(

1
𝑥

)

=
(

1
𝑥

)

𝑥 = 1 and 𝑥 ≠ 0.

ii. Which previous group(s) is it isomorphic to?

It is not isomorphic to any. Let this group be . The only candidates are other groups with countably infinite
order, aka addition of rational numbers () and addition of integers ( ).  can’t be isomorphic to , because
all elements of  have a “half,” while the elements of  don’t all have an analogous square root. To be more
explicit, all elements 𝑘′ = 𝑝

𝑞 in  have a corresponding element 𝑗′ such that 𝑗′ + 𝑗′ = 𝑘′. But not all elements
𝑘 in  have a corresponding element 𝑗 such that 𝑗 ⋅ 𝑗 = 𝑘, since, for example, no element 𝑞 of  satisfies
𝑞 ⋅ 𝑞 = − 1

2 .
Thinking about 𝑗′ + 𝑗′ = 𝑘′ and 𝑗 ⋅ 𝑗 = 𝑘 also helps us prove that  can’t be isomorphic to  . Take the

element 𝑘 = 4 in , for example. Then 𝑗 = 2 and 𝑗 = −2 both square to 𝑘. In contrast, no element 𝑘′ of 
has the property that there are two different values of 𝑗′ which satisfy 𝑗′ + 𝑗′ = 𝑘′, since either is no solution
or the unique solution 𝑗′ = 𝑘′∕2.

(l) real numbers excluding 0, multiplication

i. Does it form a group?

Yes! The real numbers excluding 0, written ℝ ⧵ 0, form a group under multiplication with identity element 1.
The group properties are satisfied:

Identity: 𝑥 ⋅ 1 = 1 ⋅ 𝑥 = 𝑥.
Closure: If 𝑥, 𝑦 ∈ ℝ ⧵ 0, then 𝑥 + 𝑦 ∈ ℝ ⧵ 0; the product of two nonzero rational numbers is rational and

nonzero.
Associativity: We have 𝑥(𝑦𝑧) = (𝑥𝑦)𝑧 for all 𝑥, 𝑦, 𝑧 ∈ ℝ ⧵ 0.

Inverse: The inverse of 𝑥 ∈ ℝ ⧵ 0 is 1
𝑥 , since 𝑥

(

1
𝑥

)

=
(

1
𝑥

)

𝑥 = 1 and 𝑥 ≠ 0.
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ii. Which previous group(s) is it isomorphic to?

It is not isomorphic to any of the previous groups. The only candidate would be the real numbers under
addition, but note that this group contains −1, which has period 2, while the real numbers under addition have
no elements with period 2.

(m) complex numbers, multiplication

i. Does it form a group?

No, because 0 prevents the group from satisfying invertibility.

ii. Which previous group(s) is it isomorphic to?

Not a group, oof.

(n) rotation by a rational number of degrees

i. Does it form a group?

Yes! The identity is 0 and the group can be thought of as adding rationals modulo 360. The group axioms are
satisfied:

Identity: 𝑥 + 0 = 0 + 𝑥 = 𝑥.
Closure: If 𝑥, 𝑦 ∈ ℚ then 𝑥 + 𝑦 ∈ ℚ.
Associativity: We have 𝑥 + 𝑦 + 𝑧 = 𝑥 + 𝑦 + 𝑧 for all 𝑥, 𝑦, 𝑧 ∈ ℚ.
Inverse: The inverse of 𝑥 is −𝑥, since 𝑥 + (−𝑥) = 0.

ii. Which previous group(s) is it isomorphic to?

None. The easiest way to see this is that the element 360
𝑛

◦
, where 𝑛 is an integer, has period 𝑛, so we can

construct elements of arbitrary periods. No previous groups have elements of arbitrary periods.

(o) rotation by a rational number of radians

i. Does it form a group?

Yes! The identity element is 0 and it is totally equivalent to the rational numbers under addition. That’s because
for any rational radian rotations 𝑟𝑝1∕𝑞1 and 𝑟𝑝2∕𝑞2 , where 𝑝1, 𝑞1, 𝑝2, 𝑞2 ∈ ℤ, 𝑞1, 𝑞2 ≠ 0 and 𝑝1∕𝑞1 ≠ 𝑝2∕𝑞2, we
have 𝑟𝑝1∕𝑞1 ≅ 𝑟𝑝2∕𝑞2 . The easiest way to understand this is that for two such rotations to be equal, there must
be some integer 𝑘 such that

𝑝1
𝑞1

=
𝑝2
𝑞2

+ 2𝜋𝑘.

There are two cases to consider: 𝑘 = 0 and 𝑘 ≠ 0. If 𝑘 = 0, then 𝑝1
𝑞1

= 𝑝2
𝑞2

, which violates our assumption. If
𝑘 ≠ 0, then since 𝜋 is irrational, the RHS is irrational while the LHS is rational. Since an irrational and rational
cannot be equal, such an integer 𝑘 cannot exist and 𝑟𝑝1∕𝑞1 ≇ 𝑟𝑝2∕𝑞2 .

The group properties are straightforward and identical to the rationals under addition.

ii. Which previous group(s) is it isomorphic to?

As explained, it is isomorphic to the rational numbers under addition.

(p) rotation by an integer number of radians

i. Does it form a group?

Yes. The identity element is 0 and it is equivalent to the integers under addition. We proceed in a similar
method to the previous problem: consider two integer radian rotations 𝑟𝑎 and 𝑟𝑏 where 𝑎, 𝑏 ∈ ℤ and 𝑎 ≠ 𝑏.

Suppose 𝑟𝑎 ≅ 𝑟𝑏. Then there is some integer 𝑘 such that

𝑎 = 𝑏 + 2𝜋𝑘.

If 𝑘 = 0, then 𝑎 = 𝑏, contradicting our assumption that 𝑎 ≠ 𝑏. If 𝑘 ≠ 0, then the RHS is irrational while the LHS
is rational. This is impossible to satisfy, so 𝑘 does not exist and 𝑟𝑎 ≇ 𝑟𝑏.

The group properties are straightforward and identical to the integers under addition.

40



ii. Which previous group(s) is it isomorphic to?

As explained, it is isomorphic to the integers under addition.

10. Can an irrational number taken to an irrational power ever be rational? Consider the potential

example 𝑎 =
√

2
√

2
. To help you answer this question, let 𝑏 = 𝑎

√

2. Simplify 𝑏, and explain why
we don’t need to know whether 𝑎 is rational or irrational.

We have

𝑏 = 𝑎
√

2 =

(

√

2
√

2
)

√

2

=
√

2
√

2⋅
√

2
=
√

2
2
= 2.

Let’s write out the facts we know.

1. We know that
√

2 is irrational.

2. By (1), we know that 𝑎 is the result of an irrational number to an irrational power.

3. We know that 2 is the result of 𝑎 to an irrational power.

Suppose 𝑎 is rational. Then 𝑎 =
√

2
√

2
is our desired example, by (2)! So, suppose 𝑎 is irrational. Then by

(3), 2 is the result of an irrational number (namely, 𝑎) to an irrational power (namely,
√

2). So then 2 = 𝑎
√

2 is
our desired example! 𝑎 has to be irrational or rational; it can’t be something else. But in either case, we can
produce a number which satisfies the requirements. Thus, we can answer in the affirmative, but we can’t give
an explicit example!12

12It turns out that 𝑎 is the irrational one by the Gelfond-Schneider theorem. This theorem was only proved in 1934; yet, we are able to
derive related results with simpler logic.
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6 Geometry of Complex Numbers

1. Explain why 𝑖𝑧 is perpendicular to 𝑧, without using DeMoivre’s theorem.

Let 𝑧 = 𝑎+ 𝑏𝑖. Then 𝑖𝑧 = 𝑖(𝑎+ 𝑏𝑖) = −𝑏+ 𝑎𝑖, which is the transformation (𝑎, 𝑏) → (−𝑏, 𝑎). Drawing this out
on the 2D plane makes clear that the angle between the two points and the origin is 90◦, simply by subtracting
angles: (90◦ + 𝜃) − 𝜃 = 90◦. This is shown in Figure 1.

𝑧 = (𝑎, 𝑏)

(−𝑏, 𝑎) = 𝑖𝑧 𝑏

𝑎

𝑏

𝑎
𝜃

90◦ + 𝜃

Figure 1: 𝑖𝑧 is perpendicular to 𝑧 as long as 𝑧 ≠ 0.

You can also explain it by observing that the lines through 𝑧/𝑖𝑧 and the origin have slopes of 𝑏
𝑎 and − 𝑎

𝑏 ,
respectively, so they must be perpendicular. In terms of vectors, < 𝑎, 𝑏 > ⋅ < −𝑏, 𝑎 >= 0, with ⋅ being the dot
product.

2. How does Arg 𝑧 relate to Arg 𝑧? (Hint: symmetry!)

Again, let 𝑧 = 𝑎 + 𝑏𝑖. 𝑧 = 𝑎 − 𝑏𝑖 is 𝑧 flipped over the 𝑥-axis, since the imaginary part is negated. Thus,
Arg 𝑧 = −Arg 𝑧 due to congruent triangles formed by 𝑧 and 𝑧.13 The geometric interpretation is shown in
Figure 2.

𝑧

𝑧

−𝜃
𝜃

Figure 2: 𝑧 and 𝑧 form congruent triangles, showing that Arg 𝑧 = −Arg 𝑧.

13The pedants may criticize my use of the equality symbol here; take this equality as modulo 2𝜋 if you must. Note that you may
eventually learn that arg is a multivalued function.
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3. Compute 𝑧𝑧 and relate it to the cis form of 𝑧.

Once more, let 𝑧 = 𝑎 + 𝑏𝑖. Then

𝑧𝑧 = (𝑎 + 𝑏𝑖)(𝑎 − 𝑏𝑖) = 𝑎2 − (𝑏𝑖)2 = 𝑎2 + 𝑏2.

If 𝑧 = 𝑟 cis 𝜃, then 𝑧𝑧 = 𝑟2. In other words, it is the square of the distance from 𝑧 to the origin.

4. Explain, using a picture, why tan(Arg 𝑧) = Im(𝑧)
Re(𝑧) .

This is basically just an application of soh-cah-toa to a triangle in the complex plane. The details are
shown in Figure 3.

𝑧 = (𝑎, 𝑏)

𝑏 = Im(𝑧)

𝑎 = Re(𝑧)
Arg 𝑧

Figure 3: tan(Arg 𝑧) = 𝑏
𝑎 = Im(𝑧)

Re(𝑧) .

5. Divide 𝑎+𝑏𝑖
𝑐+𝑑𝑖 by rationalizing the denominator.

𝑎 + 𝑏𝑖
𝑐 + 𝑑𝑖

⋅
𝑐 − 𝑑𝑖
𝑐 − 𝑑𝑖

=
(𝑎 + 𝑏𝑖)(𝑐 − 𝑑𝑖)

𝑐2 + 𝑑2

=
𝑎𝑐 + 𝑏𝑑 + (𝑏𝑐 − 𝑎𝑑)𝑖

𝑐2 + 𝑑2
.

6. Divide 𝑟1 cis 𝜃
𝑟2 cis𝜙

using DeMoivre’s theorem.

We don’t have a rule yet for applying DeMoivre’s theorem for division, but we can quickly derive it. We
have

𝑟1 cis 𝜃
𝑟2 cis𝜙

⋅
cis𝜙

cis𝜙
=

𝑟1 cis 𝜃 cis𝜙

𝑟2 cis𝜙 cis𝜙
⏟⏞⏞⏟⏞⏞⏟

=1

Multiplying by conjugate

=
𝑟1 cis 𝜃 cis(−𝜙)

𝑟2
Using Arg 𝑧 = −Arg 𝑧

=
𝑟1
𝑟2

cis(𝜃 − 𝜙). Use DeMoivre’s theorem

7. Compare and contrast the methods of division in Problems 5 and 6. Which is more convenient?
Or does it depend on the circumstance?

Opinions may vary, but Problem 6’s method is definitely faster to do if the dividend and divisor are al-
ready in cis form. Problem 5’s is likely more convenient than converting from rectangular to cis, then back to
rectangular.

8.
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(a) If 𝑧 = 𝑟 cis 𝜃, what is 1
𝑧?

As we hinted at in the previous problem, 1
𝑧 = 1

𝑟 cis(−𝜃):

1
𝑟 cis 𝜃

⋅
cis 𝜃
cis 𝜃

= cis 𝜃
𝑟 cis 𝜃 cis 𝜃

=
cis(−𝜃)
𝑟| cis 𝜃|2

= 1
𝑟
cis(−𝜃).

(b) Explain how this shows 1
𝑎+𝑏𝑖 =

𝑎−𝑏𝑖
𝑎2+𝑏2 , without having to rationalize the denominator. (Hint:

use problems 3, 4, and 7.)

Let 𝑎 + 𝑏𝑖 = 𝑟 cis 𝜃. We have

1
𝑟 cis 𝜃

= 1
𝑟
cis(−𝜃)

=
𝑟 cis(−𝜃)

𝑟2

= 𝑎 − 𝑏𝑖
𝑎2 + 𝑏2

.

9. Compute (1 + 𝑖)13; pencil, paper, and brains only. No calculators!

We have 1 + 𝑖 =
√

2 cis 𝜋
4 , since it forms a 45◦ angle with the 𝑥-axis. Applying DeMoivre’s theorem,

(1 + 𝑖)13 =
(
√

2 cis 𝜋
4

)13

=
(
√

2
)13

cis 13𝜋
4

= 64
√

2
(

cos 5𝜋
4

+ 𝑖 sin 5𝜋
4

)

= 64
√

2

(

− 1
√

2
− 1

√

2
𝑖

)

= 64(−1 − 𝑖)
= −64 − 64𝑖.

10. Compute (1+𝑖
√

3)3

(1−𝑖)2 without a calculator.

We convert to cis form and apply DeMoivre’s theorem.

(1 + 𝑖
√

3)3

(1 − 𝑖)2
=

(

2 cis(𝜋3 )
)3

(
√

2 cis(−𝜋
4 )
)2

=
8 cis(𝜋)
2 cis(−𝜋

2 )

= 8 ⋅ −1
2 ⋅ −𝑖

= 4
𝑖
⋅
−𝑖
−𝑖

= −4𝑖.
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11. Draw cis
(

𝜋
4

)

+ cis
(

𝜋
2

)

. Use your picture to prove an expression for tan
(

3𝜋
8

)

. (Hint: add them as
vectors.)

𝑧 =
(√

2
2
, 1 +

√

2
2

)

𝑤 =
(√

2
2
,
√

2
2

)

𝜋
4

3𝜋
8

1

1

Figure 4: Addition of cis
(

𝜋
4

)

+ cis
(

𝜋
2

)

as vectors.

The drawing is shown in Figure 4. The first vector, starting at the origin, is cis 𝜋
4 . The second vector,

starting at the endpoint of the first vector, is cis 𝜋
2 . The origin, along with points 𝑤 and 𝑧, form an isosceles

triangle. Furthermore, the apex of this triangle, at 𝑤, has an argument of 𝜋 − 𝜋
4 = 3𝜋

4 radians. Thus, the base
angles of the isosceles triangle are

𝜋 − 3𝜋
4

2
= 𝜋

8
.

Adding this with 𝜋
4 shows that the angle 𝑧 forms with the 𝑥-axis is

𝜋
8
+ 𝜋

4
= 3𝜋

8
,

our desired angle to analyze. We wish to find the tangent of this angle, which is just tan(Arg 𝑧). But we
know how to compute that!

tan(Arg 𝑧) =
Im(𝑧)
Re(𝑧)

=
1 +

√

2
2

√

2
2

⋅

√

2
√

2

=

√

2 + 1
1

tan
(3𝜋

8

)

=
√

2 + 1.

12. Solve 𝑧3 = 1, and show that its solutions under the operation of multiplication form a group,
isomorphic to the rotation group of the equilateral triangle. Write a group table!
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There’s numerous ways to solve this, but let’s use cis form as usual. Let 𝑧 = 𝑟 cis 𝜃. Then

𝑧3 = 𝑟3 cis 3𝜃 = 1
⟹ 𝑟 = 1
cis 3𝜃 = 1
cos 3𝜃 = 1

3𝜃 = 2𝜋𝑘 For 𝑘 ∈ ℤ

𝜃 = 2𝜋𝑘
3

⟹ 𝜃 ∈
{

0, 2𝜋
3
, 4𝜋
3

}

⟹ 𝑧 ∈
{

cis 0, cis 2𝜋
3
, cis 4𝜋

3

}

.

Under multiplication, these three values of 𝑧 indeed form a group isomorphic to the rotation group of the
equilateral triangle, 𝐶3. In particular, cis 0 is the identity, cis 2𝜋

3 is a rotation by 120◦ counterclockwise, and

cis 4𝜋
3 is a rotation by 240◦ counterclockwise. Let 𝐼 = cis 0, 𝑟 = cis 2𝜋

3 , and 𝑟2 = cis 4𝜋
3 . Then, we have the

following group table:

⋅ 𝐼 𝑟 𝑟2
𝐼 𝐼 𝑟 𝑟2
𝑟 𝑟 𝑟2 𝐼
𝑟2 𝑟2 𝐼 𝑟

13.

(a) Find multiplication groups of complex numbers which are isomorphic to the rotation groups
for

i. a non-square rectangle

Since this rotation group is just the identity and a rotation of 180◦, we can just choose the group {−1, 1}
under multiplication. 1 is the identity, and −1 = cis 180◦ is the rotation.

ii. a regular hexagon.

We following in the footsteps of the equivalent problem for the equilateral triangle. We have elements

{

cis 0, cis 60◦, cis 120◦, cis 180◦, cis 240◦, cis 300◦
}

.
These are indeed rotations of 0, 60◦, 120◦, 180◦, 240◦, and 300◦, respectively. This set under multiplication

is isomorphic to the rotation group of the hexagon, 𝐶6.

(b) Make a table for each group.

i. a non-square rectangle

Let 𝐼 be the identity and 𝑟 be the rotation of 180◦.

⋅ 𝐼 𝑟
𝐼 𝐼 𝑟
𝑟 𝑟 𝐼

ii. a regular hexagon.

Let 𝐼 be the identity and 𝑟 be the rotation of 60◦. 𝑟𝑛 is defined in the natural way, by raising cis 60◦ to the
power 𝑛.

⋅ 𝐼 𝑟 𝑟2 𝑟3 𝑟4 𝑟5
𝐼 𝐼 𝑟 𝑟2 𝑟3 𝑟4 𝑟5
𝑟 𝑟 𝑟2 𝑟3 𝑟4 𝑟5 𝐼
𝑟2 𝑟2 𝑟3 𝑟4 𝑟5 𝐼 𝑟
𝑟3 𝑟3 𝑟4 𝑟5 𝐼 𝑟 𝑟2
𝑟4 𝑟4 𝑟5 𝐼 𝑟 𝑟2 𝑟3
𝑟5 𝑟5 𝐼 𝑟 𝑟2 𝑟3 𝑟4
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(c) Compare the regular hexagon’s group to the dihedral group of the equilateral triangle, 𝐷3.
Consider: how are they the same? How are they different? Is the difference fundamental?

The two groups are not isomorphic, although they are the same size; the difference is fundamental. The
hexagon’s rotation group, 𝐶6, has elements of periods {1, 2, 3, 3, 6, 6}, while 𝐷3 has elements of periods
{1, 2, 2, 2, 3, 3}. They do share some subgroups however: the trivial subgroup of just the identity, and the
subgroups generated by 𝑟2 and by 𝑟3 in 𝐶6, which are 𝐶3 and 𝐶2 respectively.

14. Which of the following sets is a group under (i) addition and (ii) multiplication?

(a) {0}

This is a group under (i) addition, since it has an identity 0, is closed, has 0 as 0’s inverse, and 0+(0+0) =
(0 + 0) + 0. It also is a group under (ii) multiplication, for the same reasons.

(b) {1}

This is not a group under (i) addition, since 1 + 1 = 2 ∉ {1}. It is a group under multiplication, though,
since 1 ⋅ 1 = 1 and all other properties are satisfied.

(c) {0, 1}

This is not a group under (i) addition, since 1+1 = 2 ∉ {0, 1}. It is also not a group under (ii) multiplication.
0 can’t be the identity, since 1 ⋅ 0 = 0 ≠ 1. 1 also can’t be the identity, since then 0 has no inverse 𝐾 such that
0 ⋅𝐾 = 1.

(d) {−1, 1}

This is not a group under (i) addition, since 1 + (−1) = 0 ∉ {±1}. It is a group under (ii) multiplication,
since it satisfies the group properties:

1. Identity: 1 is the identity

2. Associativity: Multiplication is associative

3. Invertibility: Each element is its own inverse

4. Closure: (±1)(±1) ∈ {±1}

(e) {1,−1, 𝑖,−𝑖}

This is not a group under (i) addition, since the sum of any two of the elements takes you out of the set. It
is a group under (ii) multiplication, however. One way to see this is that 1 = cis 0, −1 = cis𝜋, 𝑖 = cis 𝜋

2 , and

−𝑖 = 3𝜋
2 , which are all rotations of multiples of 90◦. In particular, it is isomorphic to 𝐶4, the rotation group of

the square.14

(f) {naturals}

This is not a group under (i) addition, because it cannot satisfy invertibility. There is no element 𝑋 ∈ ℕ
such that 1 +𝑋 = 𝐼 = 0, for example. This is also not a group under (ii) multiplication for the same reason.

(g) {integers}

This is a group under (i) addition, because all the group properties are satisfied. The inverse of an element
𝑛 is just −𝑛, addition is associative, the identity is 0, and the sum of two integers is another integer. It is a not
a group under (ii) multiplication, because no numbers except ±1 have integer multiplicative inverses.

(h) {rationals},ℚ

14Note that the only sets of complex numbers that form multiplication groups isomorphic to 𝐶𝑛 (𝑛 ≥ 1) are
{

cis 2𝜋𝑚
𝑛

}

(0 ≤ 𝑛 < 𝑚). It’s

fun to prove this!
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This is a group under (i) addition with identity element 0. The inverse of an element 𝑝
𝑞 is − 𝑝

𝑞 , addition
is associative, and the sum of two rational numbers is another rational number. It is not a group under (ii)
multiplication, because no number is the multiplicative inverse of 0.

(i) {ℚ without zero}

This is no longer a group under (i) addition, since the identity element needs to be 0. It is now, however,
group under (ii) multiplication, because all numbers have their inverses. Multiplication is associative, the
inverse of 𝑝

𝑞 is 𝑞
𝑝 , and the product of two rationals is another rational.

(j) {complex numbers},ℂ

This is a group under (i) addition with identity element 0. The inverse of an element 𝑧 is −𝑧, addition is
associative, and the sum of two complex numbers is another complex number. This is not a group under (ii)
multiplication, because again, no number is the multiplicative inverse of 0.

(k) {ℂ without zero}

This is no longer a group under (i) addition, since the identity element needs to be 0. It is now, however,
a group under (ii) multiplication, because all numbers have their inverses. Multiplication is associative, the
inverse of 𝑧 is 1

𝑧 , and the product of two complex numbers is another complex number.

15. Prove that (𝑟1 cis 𝜃)(𝑟2 cis𝜙) = 𝑟1𝑟2 cis(𝜃+𝜙) using brute force and the angle-sum trig identities for
cos and sin. Do you prefer this method or the one on the previous page? Which method gives
you a better understanding of why DeMoivre’s works?

(𝑟1 cis 𝜃)(𝑟2 cis𝜙) = 𝑟1𝑟2(cos 𝜃 + 𝑖 sin 𝜃)(cos𝜙 + 𝑖 sin𝜙)
= 𝑟1𝑟2(cos 𝜃 cos𝜙 + 𝑖 cos 𝜃 sin𝜙 + 𝑖 sin 𝜃 cos𝜙 − sin 𝜃 sin𝜙)
= 𝑟1𝑟2((cos 𝜃 cos𝜙 − sin 𝜃 sin𝜙) + 𝑖(cos 𝜃 sin𝜙 + sin 𝜃 cos𝜙))
= 𝑟1𝑟2(cos(𝜃 + 𝜙) + 𝑖 sin(𝜃 + 𝜙))
= 𝑟1𝑟2 cis(𝜃 + 𝜙)

(Opinions may vary.) I actually prefer this because it’s kind of satisfying, but the previous way likely gives
a better understanding of the underlying mechanics.

16. Find an identity for sin 3𝜃 as we have done for cos. Most of the work is already done for you!

We already know that

cos 3𝜃 + 𝑖 sin 3𝜃 = cis 3𝜃 = (𝑐3 − 3𝑐2) + 𝑖(3𝑐2𝑠 − 𝑠3),

where 𝑐 = cos 𝜃 and 𝑠 = sin 𝜃. Equating imaginary parts, we have

sin 3𝜃 = 3𝑐2𝑠 − 𝑠3

= 3 cos2 𝜃 sin 𝜃 − sin3 𝜃.

17. Your friend’s textbook says cos 3𝜃 = 4 cos3 𝜃 − 3 cos 𝜃, different from our identity. Who’s right?

Both are right. Our identity is

cos 3𝜃 = cos3 𝜃 − 3 cos 𝜃 sin2 𝜃.

Remembering that sin2 𝜃 = 1 − cos2 𝜃, we can change the form:

cos3 𝜃 − 3 cos 𝜃 sin2 𝜃 = cos3 𝜃 − 3 cos 𝜃(1 − cos2 𝜃)

= cos3 𝜃 + 3 cos3 𝜃 − 3 cos 𝜃

= 4 cos3 𝜃 − 3 cos 𝜃.
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18. Now you can finish the rest of the proof.

If you need context for this answer, check out the relevant textbook section.

(a) Draw 𝑎, 𝑏, 𝑐, 𝑑, 𝑚, 𝑛 approximately for the quadrilateral on the previous page.

The quadrilateral is shown in Figure 5.

0 = 𝐴

𝐵

𝐶

𝐷

𝑃

𝑅

𝑄

𝑆

𝑚
𝑛

Figure 5: The quadrilateral to analyze.

The relative magnitudes and directions are shown in Figure 6 below. We find 𝑎, 𝑏, 𝑐, 𝑑 from halving the
sides of the quadrilateral. 𝑚 and 𝑛 are just the vectors from 𝑃 to 𝑅 and 𝑄 to 𝑆, respectively.

𝑥

𝑦

𝑎

𝑏𝑐

𝑑

𝑚

𝑛

Figure 6: The relative magnitudes and directions of 𝑎, 𝑏, 𝑐, 𝑑, 𝑚, 𝑛.

(b) Why does showing 𝑛 = ±𝑖𝑚 prove the segments are (i) perpendicular and (ii) the same
length?

They are (i) perpendicular because 𝑖𝑧 is perpendicular to 𝑧 for all 𝑧 ≠ 0, and (ii) are the same length
because |𝑛| = | ± 𝑖𝑚| = |𝑖𝑚| = |𝑚|.

(c) Explain why 𝑄 = 2𝑎 + 𝑏 + 𝑖𝑏.

The justification is geometric. We know that 𝐵 = 2𝑎, and we can get to the midpoint of 𝐵𝐶 by adding 𝑏.
Then, we go up to the center of the square on 𝐵𝐶 by adding 𝑖𝑏. This process is shown in Figure 7.
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𝐴

𝐵

𝐶

𝐷

𝑄

2𝑎

𝑏
𝑖𝑏

Figure 7: 𝑄 = 2𝑎 + 𝑏 + 𝑖𝑏.

(d) Find formulae for 𝑅 and 𝑆 in terms of 𝑐 and 𝑑.

In a similar fashion, we have 𝑆 = −𝑑 + 𝑖𝑑 (note that it is −𝑑 because we are going counterclockwise now)
and 𝑅 = −2𝑑 − 𝑐 + 𝑖𝑐. The interpretations of these are shown in Figure 8 below.

𝐴

𝐵

𝐶

𝐷

𝑅

𝑆

𝑖𝑑 −𝑑

−2𝑑
−𝑐 𝑖𝑐

Figure 8: 𝑆 = −𝑑 + 𝑖𝑑 and 𝑅 = −2𝑑 − 𝑐 + 𝑖𝑐.

(e) Find 𝑚 and 𝑛 in terms of 𝑎, 𝑏, 𝑐, and 𝑑.

We have 𝑚 = 𝑅 − 𝑃 = (−2𝑑 − 𝑐 + 𝑖𝑐) − (𝑎 + 𝑖𝑎) and 𝑛 = 𝑄 − 𝑆 = (2𝑎 + 𝑏 + 𝑖𝑏) − (−𝑑 + 𝑖𝑑).

(f) Check that 𝑛 − 𝑖𝑚 = 0, using the fact that 𝑎 + 𝑏 + 𝑐 + 𝑑 = 0.

We evaluate straightforwardly:

(2𝑎 + 𝑏 + 𝑖𝑏 + 𝑑 − 𝑖𝑑) − 𝑖(−2𝑑 − 𝑐 + 𝑖𝑐 − 𝑎 − 𝑖𝑎) = 2𝑎 + 𝑏 + 𝑖𝑏 + 𝑑 − 𝑖𝑑 + 2𝑖𝑑 + 𝑖𝑐 + 𝑐 + 𝑖𝑎 − 𝑎
= 𝑎 + 𝑏 + 𝑐 + 𝑑 + 𝑖𝑎 + 𝑖𝑏 + 𝑖𝑐 + 𝑖𝑑
= (𝑎 + 𝑏 + 𝑐 + 𝑑)(1 + 𝑖)
= 0.

19. In the previous problem, we drew squares outside a quadrilateral and connected their centers.
Conjecture what happens if we draw equilateral triangles outside a triangle and connect their
centers. Prove your conjecture using complex numbers.
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We conjecture that following this construction leads to connecting together another equilateral triangle. An
example, with the variables we’ll use labeled, is shown in Figure 9.

0 = 𝐴

𝐵

𝐶

𝐵′

𝑃
𝑄

𝑅

Figure 9: Equilateral triangles around a central, arbitrary triangle △𝐴𝐵𝐶 with 𝐴 at the origin.

Similar to the last problem, let 𝐴, 𝐵, and 𝐶 be numbers in the complex plane. Without loss of generality,
let 𝐴 = 0 be the origin. Also, define 𝑎 = 𝐵−𝐴

2 , 𝑏 = 𝐶−𝐵
2 , and 𝑐 = 𝐴−𝐶

2 to be the vectors going halfway along

each of ⃖⃖⃖⃖⃖⃗𝐴𝐵, ⃖⃖⃖⃖⃖⃗𝐵𝐶 , and ⃖⃖⃖⃖⃖⃗𝐶𝐴. Finally, let 𝑃 , 𝑄, and 𝑅 be the centers of the triangles on sides 𝐴𝐵, 𝐵𝐶 , and 𝐶𝐴
respectively.

Consider 𝑄 in the figure. It is on the 60◦ vertex of a 30-60-90 triangle △𝐵𝐵′𝑄, outlined in dotted line. We
know that ⃖⃖⃖⃖⃖⃖⃗𝐵𝐵′ = 𝑏. Thus, since 𝐵𝐵′ ∶ 𝐵′𝑄 =

√

3 ∶ 1,

𝐵′𝑄 =
|𝑏|
√

3
.

Furthermore, since 𝐵′𝑄 ⟂ 𝐵𝐵′, we know that it is 𝑠 ⋅ 𝑖𝑏 for some real 𝑠. Combining these facts,

𝐵′𝑄 = 𝑖𝑏
|𝑖𝑏|

|𝑏|
√

3
= 𝑖𝑏

√

3
.

Since 𝑄 = ⃖⃖⃖⃖⃖⃗𝐴𝐵 + ⃖⃖⃖⃖⃖⃖⃗𝐵𝐵′ + ⃖⃖⃖⃖⃖⃖⃖⃗𝐵′𝑄, we have

𝑄 = 2𝑎 + 𝑏 + 𝑖𝑏
√

3
.

With similar logic, we know that

𝑃 = 𝑎 + 𝑖𝑎
√

3

𝑅 = −𝑐 + 𝑖𝑐
√

3

Like with the quadrilateral, we know 𝑎 + 𝑏 + 𝑐 = 0, since 2(𝑎 + 𝑏 + 𝑐) = 0. To prove the dashed triangle is
indeed equilateral, we can just show that 𝑃 −𝑅 = (𝑄−𝑃 ) cis 120◦. After all, if the vectors ⃖⃖⃖⃖⃖⃗𝑅𝑃 and ⃖⃖⃖⃖⃖⃗𝑃𝑄 have an
angle of 120◦ between them and they have the same magnitude, △𝑃𝑄𝑅 is equilateral by SAS Congruence
as shown in Figure 10. Substituting in our found values for 𝑃 ,𝑄,𝑅 in terms of 𝑎, 𝑏, 𝑐, we get
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𝑃 − 𝑅 = (𝑄 − 𝑃 ) cis 120◦

𝑎 + 𝑖𝑎
√

3
−

(

−𝑐 + 𝑖𝑐
√

3

)

=

(

2𝑎 + 𝑏 + 𝑖𝑏
√

3
−

(

𝑎 + 𝑖𝑎
√

3

))(

−1
2
+

√

3
2

𝑖

)

(𝑎 + 𝑐) + 𝑖𝑎 − 𝑖𝑐
√

3
=

(

𝑎 + 𝑏 + 𝑖𝑏 − 𝑖𝑎
√

3

)(

−1
2
+

√

3
2

𝑖

)

= −1
2
𝑎 − 1

2
𝑏 − 𝑖𝑏 − 𝑖𝑎

2
√

3
+

√

3
2

𝑖𝑎 +

√

3
2

𝑖𝑏 + 𝑖𝑏 − 𝑖𝑎
2

⋅ 𝑖

=
(

−1
2
𝑎 − 1

2
𝑏 + 𝑖𝑏 − 𝑖𝑎

2
⋅ 𝑖
)

+

(

− 𝑖𝑏 − 𝑖𝑎

2
√

3
+

√

3
2

𝑖𝑎 +

√

3
2

𝑖𝑏

)

=
(

−1
2
𝑎 − 1

2
𝑏 − 1

2
𝑏 + 1

2
𝑎
)

+

(

𝑖𝑎 − 𝑖𝑏 + 3𝑖𝑎 + 3𝑖𝑏

2
√

3

)

= (−𝑏) +

(

4𝑖𝑎 + 2𝑖𝑏

2
√

3

)

= (−𝑏 + 𝑎 + 𝑏 + 𝑐) +

(

𝑖(2𝑎 + 𝑏)
√

3

)

= (𝑎 + 𝑐) +
𝑖(2𝑎 + 𝑏 − (𝑎 + 𝑏 + 𝑐))

√

3

(𝑎 + 𝑐) + 𝑖𝑎 − 𝑖𝑐
√

3
= (𝑎 + 𝑐) + 𝑖𝑎 − 𝑖𝑐

√

3

Tedious, but it worked.

𝑃 − 𝑅

𝑄 − 𝑃

120◦ ⟶

𝑃
𝑄

𝑅

60◦

Figure 10: SAS Congruence lets us say that 𝑃 −𝑅 = (𝑄−𝑃 ) cis 120◦ is sufficient to prove the triangle △𝑃𝑄𝑅
is equilateral.

20. The hard way to find an identity for tan 3𝜃 is to divide the identity for sin and cos that we already
found. Try this. Make sure your answer is in terms of tan only!

We have found that cos 3𝜃 = cos3 𝜃−3 cos 𝜃 sin2 𝜃 and sin 3𝜃 = 3 cos2 𝜃 sin 𝜃−sin3 𝜃. We set tan 3𝜃 = sin 3𝜃
cos 3𝜃

and evaluate:
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tan 3𝜃 = sin 3𝜃
cos 3𝜃

= 3 cos2 𝜃 sin 𝜃 − sin3 𝜃
cos3 𝜃 − 3 cos 𝜃 sin2 𝜃

= sin 𝜃
cos 𝜃

⋅
3 cos2 𝜃 − sin2 𝜃
cos2 𝜃 − 3 sin2 𝜃

⋅

1
cos2 𝜃
1

cos2 𝜃

= tan 𝜃 ⋅
3 − sin2 𝜃

cos2 𝜃

1 − 3 sin2 𝜃
cos2 𝜃

= tan 𝜃 ⋅ 3 − tan2 𝜃
1 − 3 tan2 𝜃

= 3 tan 𝜃 − tan3 𝜃
1 − 3 tan2 𝜃

.

21. The easier way to get an identity for tan 3𝜃 starts with setting 𝑧 = 1 + 𝑖 tan 𝜃.

(a) Why is Arg 𝑧 = 𝜃?

You can see this pretty quickly with a diagram, like in Figure 11. More algebraically, we have

tan(Arg 𝑧) = Im(𝑧) = tan(𝜃)

⟹ Arg 𝑧 = 𝜃.

𝑧

tan 𝜃

1
𝜃

Figure 11: Arg 𝑧 = tan−1
(

tan 𝜃
1

)

= 𝜃.

(b) Why is tan 3𝜃 = Im(𝑧3)
Re(𝑧3)?

We have

tan 3𝜃 = sin 3𝜃
cos 3𝜃

=
Im(cis 3𝜃)
Re(cis 3𝜃)

.

But since 𝑧 makes an angle of 𝜃 with the 𝑥-axis, we can express it as 𝑟 cis 𝜃 for some real 𝑟. Thus,

Im(𝑧3)
Re(𝑧3)

=
Im(𝑟3 cis 3𝜃)
Re(𝑟3 cis 3𝜃)

=
Im(cis 3𝜃)
Re(cis 3𝜃)

,

which matches the expression for tan 3𝜃.

(c) Use (b) to find an identity for tan 3𝜃.

We expand out 𝑧3 and factor into real and imaginary parts:

𝑧3 = (1 + 𝑖 tan 𝜃)3 = 13 + 3𝑖 tan 𝜃 − 3 tan2 𝜃 − 𝑖 tan3 𝜃

= (1 − 3 tan2 𝜃) + 𝑖(3 tan 𝜃 − tan3 𝜃).
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Then we use our expression for tan 3𝜃 in terms of 𝑧3:

tan 3𝜃 =
Im(𝑧3)
Re(𝑧3)

= 3 tan 𝜃 − tan3 𝜃
1 − 3 tan2 𝜃

.

22. Find multiplication groups of complex numbers isomorphic to rotation groups for the

(a) regular octagon.

We choose complex numbers corresponding to rotations of 0, 45◦,⋯ , 315◦:

𝑧 =
{

cis 0, cis 𝜋
4
, cis 𝜋

2
, cis 3𝜋

4
, cis𝜋, cis 5𝜋

4
, cis 3𝜋

2
, cis 7𝜋

4

}

.

(b) regular pentagon.

We simply choose complex numbers corresponding to rotations of 0, 72◦,⋯ , 288◦:

𝑧 =
{

cis 0, cis 2𝜋
5
, cis 4𝜋

5
, cis 6𝜋

5
, cis 8𝜋

5

}

.

23. Make tables for

(a) the rotation group of the regular octagon.

There are 8 elements. If 𝑟 is a rotation by 45◦, then the elements are 𝐼, 𝑟, 𝑟2, ..., 𝑟7. The group table is
shown below.

⋅ 𝐼 𝑟 𝑟2 𝑟3 𝑟4 𝑟5 𝑟6 𝑟7
𝐼 𝐼 𝑟 𝑟2 𝑟3 𝑟4 𝑟5 𝑟6 𝑟7
𝑟 𝑟 𝑟2 𝑟3 𝑟4 𝑟5 𝑟6 𝑟7 𝐼
𝑟2 𝑟2 𝑟3 𝑟4 𝑟5 𝑟6 𝑟7 𝐼 𝑟
𝑟3 𝑟3 𝑟4 𝑟5 𝑟6 𝑟7 𝐼 𝑟 𝑟2
𝑟4 𝑟4 𝑟5 𝑟6 𝑟7 𝐼 𝑟 𝑟2 𝑟3
𝑟5 𝑟5 𝑟6 𝑟7 𝐼 𝑟 𝑟2 𝑟3 𝑟4
𝑟6 𝑟6 𝑟7 𝐼 𝑟 𝑟2 𝑟3 𝑟4 𝑟5
𝑟7 𝑟7 𝐼 𝑟 𝑟2 𝑟3 𝑟4 𝑟5 𝑟6

(b) the dihedral group of the square.

There are, once again, 4 ⋅ 2 = 8 elements. Let 𝑟 be a rotation by 90◦, and 𝑓 be a flip about say, the 𝑥-axis.
The group table is shown below.

⋅ 𝐼 𝑟 𝑟2 𝑟3 𝑓 𝑓𝑟 𝑓𝑟2 𝑓𝑟3
𝐼 𝐼 𝑟 𝑟2 𝑟3 𝑓 𝑓𝑟 𝑓𝑟2 𝑓𝑟3
𝑟 𝑟 𝑟2 𝑟3 𝐼 𝑓𝑟3 𝑓 𝑓𝑟 𝑓𝑟2
𝑟2 𝑟2 𝑟3 𝐼 𝑟 𝑓𝑟2 𝑓𝑟3 𝑓 𝑓𝑟
𝑟3 𝑟3 𝐼 𝑟 𝑟2 𝑓𝑟 𝑓𝑟2 𝑓𝑟3 𝑓
𝑓 𝑓 𝑓𝑟 𝑓𝑟2 𝑓𝑟3 𝐼 𝑟 𝑟2 𝑟3
𝑓𝑟 𝑓𝑟 𝑓𝑟2 𝑓𝑟3 𝑓 𝑟3 𝐼 𝑟 𝑟2
𝑓𝑟2 𝑓𝑟2 𝑓𝑟3 𝑓 𝑓𝑟 𝑟2 𝑟3 𝐼 𝑟
𝑓𝑟3 𝑓𝑟3 𝑓 𝑓𝑟 𝑓𝑟2 𝑟 𝑟2 𝑟3 𝐼

(c) Is the difference between them fundamental?

Yes, the difference is fundamental, even though they have the same order. The easiest way to see this is
that the latter group has 4 elements of order 2, but the former group has only 1 such element.

24. Which of the following tables defines a group? Why or why not?

54



(a)

$ 𝐼 𝐴 𝐵 𝐶 𝐷
𝐼 𝐼 𝐴 𝐵 𝐶 𝐷
𝐴 𝐴 𝐶 𝐷 𝐵 𝐼
𝐵 𝐵 𝐼 𝐶 𝐷 𝐴
𝐶 𝐶 𝐷 𝐴 𝐼 𝐵
𝐷 𝐷 𝐵 𝐼 𝐴 𝐶

This table does not define a group, because it does not follow associativity. For example, (𝐷$𝐴)$𝐴 =
𝐵$𝐴 = 𝐼 , but 𝐷$(𝐴$𝐴) = 𝐷$𝐶 = 𝐴.

(b)

# 𝐼 𝐴 𝐵 𝐶 𝐷
𝐼 𝐼 𝐴 𝐵 𝐶 𝐷
𝐴 𝐴 𝐵 𝐶 𝐷 𝐼
𝐵 𝐵 𝐶 𝐷 𝐼 𝐴
𝐶 𝐶 𝐷 𝐼 𝐴 𝐵
𝐷 𝐷 𝐼 𝐴 𝐵 𝐶

This table is a group; in fact, it is a commutative group. The quickest way to see this is noting that it is (up
to isomorphism) the cyclic group of order 5, where 𝐴 = 𝑟, 𝐵 = 𝑟2, 𝐶 = 𝑟3, and 𝐷 = 𝑟4.

25. Name some subsets of the complex numbers that are groups under multiplication. I can name
an infinite number of both finite and infinite groups with this property, so after you list a few of
each type, try to generalize.

Some simple examples: {1}, {±1}, {±1,±𝑖}.
In general, we choose the 𝑛th roots of unity: the numbers of the form cis 2𝜋𝑘

𝑛 for 𝑘 ∈ ℤ. Each rotation is a
symmetry of the 𝑛-gon, and thus this set under multiplication is isomorphic to the cyclic group of order 𝑛.

26. Prove with a diagram that if |𝑧| = 1, then Im
(

𝑧
(𝑧+1)2

)

= 0.

To draw a diagram, we need to interpret these expressions as points on the complex plane. |𝑧| = 1 implies
that 𝑧 is 1 away from the origin. 𝑧 + 1 is 𝑧, translated right by 1 unit in the 𝑥-axis. Let 𝑧 + 1 = 𝑟 cis 𝜃. Then
(𝑧 + 1)2 = 𝑟2 cis 2𝜃, so it forms an angle of 2𝜃 with the origin.

If the quotient 𝑧
(𝑧+1)2 has no imaginary part, then (𝑧 + 1)2 is a real scalar times 𝑧. In other words, the two

numbers have the same complex argument. Thus, we wish to prove that Arg 𝑧 and Arg((𝑧 + 1)2) are equal.
The scenario is shown in Figure 12.

𝑧 𝑧 + 1

(𝑧 + 1)2

𝜃

1

1
𝜃

Figure 12: A graph of 𝑧, 𝑧 + 1, and (𝑧 + 1)2.
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As shown in the diagram, Arg(𝑧 + 1) = 𝜃. The triangle formed by 𝑂, 𝑧 and 𝑧 + 1 is isosceles, since it has
two sides of length 1. Furthermore, it has a base angle of 𝜃 by the parallel postulate. Thus, the angle marked
with a double line is also 𝜃, and Arg 𝑧 = 2𝜃. But Arg((𝑧 + 1)2) = 2𝜃! Thus, we have

Im
(

𝑧
(𝑧 + 1)2

)

= Im
(

𝑟1 cis 2𝜃
𝑟2 cis 2𝜃

)

= Im
(

𝑟1
𝑟2

+ 0𝑖
)

= 0.

This is not truly complete, because we have only considered 𝑧 in the first quadrant. In this case, extending
it to other locations of 𝑧 is pretty trivial. Nonetheless, I provide an algebraic solution for fun.

We wish to show that (𝑧 + 1)2 = 𝑘𝑧 for some real 𝑘. Express 𝑧 as cis 𝜃. Then

(cis 𝜃 + 1)2 = cis2 𝜃 + 2 cis 𝜃 + 1.
Our supposed 𝑘 is

𝑘 =
(𝑧 + 1)2

𝑧
= cis2 𝜃 + 2 cis 𝜃 + 1

cis 𝜃
= cis 𝜃 + 2 + cis(−𝜃)

= cis 𝜃 + 2 + cis 𝜃
= 2Re(cis 𝜃) + 2,

which is indeed real. It’s interesting what the scale factor actually is. Furthermore, since Re(cis 𝜃) = cos 𝜃,
we have a polar equation

|𝑘𝑧| = 𝑟 = 2 cos 𝜃 + 2,
hinting that the path traced out by (𝑧+1)2 is in fact a cardioid! The cardioid produced is shown in Figure 13

below.

𝑥

𝑦

(4,0)

(0,2)

(0,−2)

Figure 13: The cardioid produced by (𝑧 + 1)2 for |𝑧| = 1.

It’s all connected, guys.

27. Prove geometrically that if |𝑧| = 1, then |1 − 𝑧| =
|

|

|

|

2 sin
(

Arg 𝑧
2

)

|

|

|

|

.

To prove this geometrically, we must again consider what the various expressions in the desired equation
mean. |𝑧| = 1 means that 𝑧 is distance 1 from the origin. 1 − 𝑧 is the reflection of 𝑧 across the origin, then
translated by 1 units right.

To geometrically interpret 𝐴 = 2 sin
(

Arg 𝑧
2

)

, we halve the angle 𝜃 = Arg 𝑧 and draw a vector of length 2;

the imaginary component, or 𝑦 height, of this new point is the desired quantity.
The diagram of all this is shown in Figure 14.
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𝑧

1 − 𝑧−𝑧

1

1

1

𝜃

𝐴 = 2 cis 𝜃
2

𝜃∕2

2

𝜃

Figure 14: Graph of 𝑧, 1 − 𝑧, and sin
(

𝜃
2

)

.

We wish to show that the two lengths indicated in braces are equal. There’s a couple of ways to do this;
perhaps the most natural is to find a triangle congruent to the one formed by the origin, −𝑧, and 1 − 𝑧. This is
the other dashed triangle shown in Figure 15.

1 − 𝑧−𝑧

1

1

𝐴 = 2 cis 𝜃
2

𝜃∕2
1

1

1

𝜃

𝑂

𝑀

𝐹

Figure 15: The succulent triangle.

Because the angles of a triangle sum to 𝜋, we know the angle ∠𝑀𝐴𝐹 is 𝜋 − 𝜃
2 − 𝜋

2 = 𝜋−𝜃
2 . Furthermore,

△𝐴𝑀𝐹 is isosceles with an apex at 𝑀 , since the midpoint of the hypotenuse of a right triangle is equidistant
from all vertices. Thus, ∠𝑀𝐴𝐹 = ∠𝑀𝐹𝐴, and we have

∠𝐴𝑀𝐹 = 𝜋 − ∠𝑀𝐴𝐹 − ∠𝑀𝐹𝐴 = 𝜋 − 𝜋 − 𝜃
2

⋅ 2 = 𝜃.

Thus, by SAS Congruence, the two dashed triangles are congruent. Finally, pairing up the previously
indicated sides, we have

|1 − 𝑧| = 𝐴𝐹 =
|

|

|

|

Im
(

2 cis 𝜃
2

)

|

|

|

|

,

as desired.
Technically, this proof is slightly incomplete, because some of these triangles do not exist as described for

𝜃 ≥ 90◦. You can extend it to these cases with no problem, but I’d also like to give a algebraic proof to show
its perks.

By the half-angle identity,

|

|

|

|

|

2 sin
(

Arg 𝑧
2

)

|

|

|

|

|

=
|

|

|

|

|

±2
√

1 − cosArg 𝑧
2

|

|

|

|

|

=
√

2(1 − cosArg 𝑧).

Let 𝑧 = 𝑎 + 𝑏𝑖 = cis 𝜃; note that 𝑟 = 1 since |𝑧| = 1. We know that cosArg 𝑧 = 𝑎. Then
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|1 − (𝑎 + 𝑏𝑖)| = |(1 − 𝑎) − 𝑏𝑖|

=
√

𝑏2 + (1 − 𝑎)2

=
√

1 − 𝑎2 + (1 − 2𝑎 + 𝑎2)

=
√

2 − 2𝑎

=
√

2(1 − 𝑎)

=
√

2(1 − cosArg 𝑧).

This matches our expression using half-angle for
|

|

|

|

2 sin
(

Arg 𝑧
2

)

|

|

|

|

.

I have a slight preference for the algebraic solution because it is quick, easier to understand, and mathe-
matically complete. Nonetheless, the geometric solution gives a better idea of why the equation is true.

28.

(a) Prove that if (𝑧 − 1)10 = 𝑧10, then Re(𝑧) = 1
2 . (Hint: if two numbers are equal, they have the

same magnitude.)

We do as the hint suggests. We know that |(𝑧 − 1)10| = |𝑧10|. Expanding this out would be rough, but we
can take the exponents out of the inside of the magnitude symbols15.

So |𝑧 − 1|10 = |𝑧|10. Since |𝑛| ≥ 0, we have |𝑧 − 1| = |𝑧|.
Let 𝑧 = 𝑎 + 𝑏𝑖. Recall that, by definition, |𝑤| =

√

Re(𝑤)2 + Im(𝑤)2. Then |𝑧 − 1| = |𝑎 + 𝑏𝑖 − 1| =
√

(𝑎 − 1)2 + 𝑏2 and |𝑧| = |𝑎 + 𝑏𝑖| =
√

𝑎2 + 𝑏2. We set these equal and solve:

√

(𝑎 − 1)2 + 𝑏2 =
√

𝑎2 + 𝑏2

(𝑎 − 1)2 + 𝑏2 = 𝑎2 + 𝑏2

(𝑎 − 1)2 = 𝑎2

𝑎 − 1 = ±𝑎.

If 𝑎 − 1 = 𝑎, then −1 = 0, which is dumb. Thus, 𝑎 − 1 = −𝑎, so 𝑎 = 1
2 and indeed, Re(𝑧) = 1

2 as desired.

(b) How many solutions does this equation have?

We have (𝑧− 1)10 = 𝑧10, so (𝑧− 1)10 − 𝑧10 = 𝑃 (𝑧) = 0, where 𝑃 is a polynomial of degree 9. Thus, by the
Fundamental Theorem of Algebra, there are 9 solutions... if there aren’t any repeated roots. So this is only
truly complete if we know there are no roots which appear in the factorization twice or more. Unfortunately, I
can’t think of a way to do this without calculus.16

Let’s start over. We should use the fact that Re(𝑧) = 1
2 . A simple diagram reveals that 𝑧 and 𝑧 − 1

are symmetric about the 𝑦-axis, since Re(𝑧) = Re
(

1
2 + 𝑏𝑖

)

= −Re
(

1
2 + 𝑏𝑖 − 1

)

. The diagram is shown in
Figure 16.

15This is true because |(𝑟 cis 𝜃)𝑛| = |𝑟𝑛 cis 𝑛𝜃| = |𝑟𝑛|.
16For that route, we simply check that 𝑃 ′′(𝑧) ≠ 0 for all solutions, which isn’t pleasant until a clever rearrangement and substitution.

Try it if you know how!
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Re(𝑧) = 1
2

𝑧𝑧 − 1

𝜋
2
− 𝜙

𝜙𝜙

Figure 16: 𝑧 and 1 − 𝑧, residents of the complex plane.

Let 𝑧 in the first quadrant make a angle 𝜙 to the ±𝑦-axis. Note that we’re using the 𝑦-axis, not the 𝑥-axis,
for mathematical convenience. In general, for 𝑧 in the first and fourth quadrants17, we have Arg 𝑧 = 𝜋

2 − 𝜙
and Arg(𝑧 − 1) = 𝜋

2 + 𝜙. Since |𝑧| = |𝑧 − 1| = 𝑟, we have

𝑧 = 𝑟 cis
(𝜋
2
− 𝜙

)

; 𝑧 − 1 = 𝑟 cis
(𝜋
2
+ 𝜙

)

.

Since (𝑧 − 1)10 = 𝑧10, we have

(

𝑟 cis
(𝜋
2
− 𝜙

))10
=
(

𝑟 cis
(𝜋
2
+ 𝜙

))10

𝑟10 cis(5𝜋 − 10𝜙) = 𝑟10 cis(5𝜋 + 10𝜙)
cis(5𝜋 − 10𝜙) = cis(5𝜋 + 10𝜙)

5𝜋 − 10𝜙 + 2𝜋𝑘 = 5𝜋 + 10𝜙 For some 𝑘 ∈ ℤ
20𝜙 = 2𝜋𝑘

𝜙 = 2𝜋𝑘
20

.

To find all unique solutions, we restrict 𝑘 to the range 0 ≤ 𝑘 ≤ 19... wait, isn’t that 20 solutions?
The issue is that 𝑧 must be in the first or fourth quadrant, so that our premise |𝑧| = |𝑧 − 1| is true. That

means 0 < 𝜙 < 𝜋, a strict relation because 𝜙 = 0 or 𝜙 = 𝜋 only gives values along the 𝑦-axis, which does not
intersect with Re(𝑧) = 0. Solving this gives

0 < 2𝜋𝑘
20

< 𝜋

0 < 𝜋𝑘 < 10𝜋

0 < 𝑘 < 10

𝑘 ∈ {1, 2, ..., 8, 9},

which is 9 solutions, in agreement with our polynomial argument.

29. I claim that 𝑒𝑖𝜃 = cos 𝜃 + 𝑖 sin 𝜃 = cis 𝜃, for 𝜃 in radians.

(a) Find 𝑒−𝑖𝜃 .

𝑒−𝑖𝜃 = cos(−𝜃) + 𝑖 sin(−𝜃) = cos 𝜃 − 𝑖 sin 𝜃.

(b) Find 𝑒𝑖𝜃+𝑒−𝑖𝜃
2 .

17If 𝑧 is in the fourth quadrant, then you’d define 𝜙 as 𝜋 + angle to negative 𝑦axis, where the angle is taken clockwise so it’s positive.

59



𝑒𝑖𝜃 + 𝑒−𝑖𝜃

2
= cos 𝜃 + 𝑖 sin 𝜃 + cos 𝜃 − 𝑖 sin 𝜃

2
= cos 𝜃.

(c) Find 𝑒𝑖𝜃−𝑒−𝑖𝜃
2𝑖 .

𝑒𝑖𝜃 − 𝑒−𝑖𝜃

2𝑖
=

cos 𝜃 + 𝑖 sin 𝜃 − (cos 𝜃 − 𝑖 sin 𝜃)
2𝑖

= sin 𝜃.

30. Use your new, complex definitions for cos and sin to find:

(a) cos2 𝜃 + sin2 𝜃

(

𝑒𝑖𝜃 + 𝑒−𝑖𝜃

2

)2
+
(

𝑒𝑖𝜃 − 𝑒−𝑖𝜃

2𝑖

)2
=
(

𝑒𝑖𝜃 + 𝑒−𝑖𝜃

2

)2
−
(

𝑒𝑖𝜃 − 𝑒−𝑖𝜃

2

)2

=
(

𝑒𝑖𝜃 + 𝑒−𝑖𝜃

2
+ 𝑒𝑖𝜃 − 𝑒−𝑖𝜃

2

)(

𝑒𝑖𝜃 + 𝑒−𝑖𝜃

2
− 𝑒𝑖𝜃 − 𝑒−𝑖𝜃

2

)

=
(

𝑒−𝑖𝜃
) (

𝑒𝑖𝜃
)

= 𝑒−𝑖𝜃+𝑖𝜃

= 𝑒0

= 1.

That was expected.

(b) tan 𝜃

tan 𝜃 = sin 𝜃
cos 𝜃

=
𝑒𝑖𝜃−𝑒−𝑖𝜃

2𝑖
𝑒𝑖𝜃+𝑒−𝑖𝜃

2

= 𝑒𝑖𝜃 − 𝑒−𝑖𝜃

𝑖(𝑒𝑖𝜃 + 𝑒−𝑖𝜃)
.

(c) cos 2𝜃

cos 2𝜃 = 𝑒2𝑖𝜃 + 𝑒−2𝑖𝜃

2
.

(d) sin 2𝜃

sin 2𝜃 = 𝑒2𝑖𝜃 − 𝑒−2𝑖𝜃

2𝑖
.

(e) What kind of group is generated by
{

𝑒𝑖𝜃 , 𝑒−𝑖𝜃
}

under the operation of multiplication if 𝜃 is
an integer? A rational multiple of 𝜋?

If 𝜃 = 0, then the group is the trivial group of order 1. If 𝜃 is any other integer, then a group isomorphic to
the additive group of the integers is generated. We pair up 𝑒𝑖𝑘𝜃 with the integer 𝑘, so that

𝑒𝑖𝑘1𝜃 ⋅ 𝑒𝑖𝑘2𝜃 = 𝑒𝑖(𝑘1+𝑘2)𝜃 ↔ 𝑘1 + 𝑘2.

If 𝜃 is a rational multiple of 𝜋, say 𝑝
𝑞 ⋅ 2𝜋 where gcd(𝑝, 𝑞) = 1, then we get (up to isomorphism) cyclic group

of order 𝑞.
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31. You’ve used the quadratic equation throughout high school, but there’s also a cubic equation
that finds the roots of any cubic. Let’s derive it, starting with the cubic 𝑥3 + 𝑏𝑥2 + 𝑐𝑥 + 𝑑 = 0.

(a) Make the substitution 𝑥 = 𝑦 − 𝑏
3 . Combine like terms to create an equation of the form

𝑦3 − 3𝑝𝑦 − 2𝑞 = 0, with 𝑝, 𝑞 in terms of 𝑏, 𝑐, and 𝑑.

(

𝑦 − 𝑏
3

)3
+ 𝑏

(

𝑦 − 𝑏
3

)2
+ 𝑐

(

𝑦 − 𝑏
3

)

+ 𝑑 = 0
(

𝑦3 − 3 ⋅
𝑏𝑦2

3
+ 3 ⋅

𝑏2𝑦
9

− 𝑏3

27

)

+
(

𝑏𝑦2 −
2𝑏2𝑦
3

+ 𝑏3

9

)

+
(

𝑐𝑦 − 𝑏𝑐
3

)

+ 𝑑 = 0

𝑦3 + (−𝑏 + 𝑏) 𝑦2 +
(

𝑏2𝑦
3

−
2𝑏2𝑦
3

+ 𝑐
)

𝑦 +
(

− 𝑏3

27
+ 𝑏3

9
− 𝑏𝑐

3
+ 𝑑

)

= 0

𝑦3 +
(

𝑐 − 𝑏2

3

)

𝑦 +
(

𝑑 − 𝑏𝑐
3

+ 2𝑏3
27

)

= 0

𝑦3 − 3
(

𝑏2

9
− 𝑐

3

)

⏟⏞⏞⏞⏟⏞⏞⏞⏟
𝑝

𝑦 − 2
(

𝑏𝑐
6

− 𝑏3

27
− 𝑑

2

)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝑞

= 0.

Thus, 𝑝 = 𝑏2

9 − 𝑐
3 and 𝑞 = 𝑏𝑐

6 − 𝑏3

27 −
𝑑
2 . This type of cubic equation—in which the 𝑥3 coefficient is 1 and the

𝑥2 coefficient is 0—is known as a depressed cubic. Make of that what you will.

(b) Rearrange this equation as 𝑦3 = 3𝑝𝑦 + 2𝑞.

𝑦3 = 3
(

𝑏2

9
− 𝑐

3

)

𝑦 + 2
(

𝑏𝑐
6

− 𝑏3

27
− 𝑑

2

)

.

(c) Make the substitution 𝑦 = 𝑠+ 𝑡 into (b), and prove that 𝑦 is a solution of the cubic in part (a)
if 𝑠𝑡 = 𝑝 and 𝑠3 + 𝑡3 = 2𝑞.

We substitute 𝑦 = 𝑠 + 𝑡 and use the fact that 𝑠𝑡 = 𝑝 and 𝑠3 + 𝑡3 = 2𝑞 to simplify.

(𝑠 + 𝑡)3 = 3𝑝(𝑠 + 𝑡) + 2𝑞

𝑠3 + 3𝑠2𝑡 + 3𝑠𝑡2 + 𝑡3 = 3𝑝𝑠 + 3𝑝𝑡 + 2𝑞

3𝑠(𝑠𝑡) + 3𝑡(𝑠𝑡) + 𝑠3 + 𝑡3 = 3𝑝𝑠 + 3𝑝𝑡 + 2𝑞
3𝑠𝑝 + 3𝑡𝑝 + 2𝑞 = 3𝑝𝑠 + 3𝑝𝑡 + 2𝑞

0 = 0.

This checks out.

(d) Eliminate 𝑡 between these two equations to get a quadratic in 𝑠3.

We have 𝑡3 = 2𝑞 − 𝑠3. Also, (𝑠𝑡)3 = 𝑝3, so

(𝑠𝑡)3 = 𝑠3𝑡3 = 𝑠3(2𝑞 − 𝑠3) = 𝑝3

−(𝑠3)2 + 2𝑞𝑠3 − 𝑝3 = 0

(𝑠3)2 − 2𝑞𝑠3 + 𝑝3 = 0.

(e) Solve this quadratic to find 𝑠3. By symmetry, what is 𝑡3?
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Let 𝑤 = 𝑠3. Then the above quadratic is 𝑤2 − 2𝑞𝑤 + 𝑝3 = 0. The solutions are

𝑠3 = 𝑤 =
2𝑞 ±

√

4𝑞2 − 4𝑝3

2
=

2𝑞 ± 2
√

𝑞2 − 𝑝3

2
= 𝑞 ±

√

𝑞2 − 𝑝3.

We have 𝑡3 = 2𝑞 − 𝑠3 = 2𝑞 − (𝑞 ±
√

𝑞2 − 𝑝3) = 𝑞 ∓
√

𝑞2 − 𝑝3. This inverted ± sign, ∓, means that when
𝑠3’s ± sign is positive, the ∓ sign is negative, and vice versa.

(f) Find a formula for 𝑦 in terms of 𝑝 and 𝑞. What about a formula for 𝑥?

Taking cube roots of both sides of our expressions for 𝑡3 and 𝑠3, we find that

𝑠 =
3
√

𝑞 ±
√

𝑞2 − 𝑝3,

𝑡 =
3
√

𝑞 ∓
√

𝑞2 − 𝑝3.

We must keep in mind, however, that over the complex numbers, taking cube roots outputs 3 possible
values. Thus, the three solutions for 𝑠 and 𝑡 are

𝑠 =
3
√

𝑞 ±
√

𝑞2 − 𝑝3 ⋅ cis 2𝜋𝑘
3

,

𝑡 =
3
√

𝑞 ∓
√

𝑞2 − 𝑝3 ⋅ cis
(

2𝜋 − 2𝜋𝑘
3

)

,

where 𝑘 ∈ {0, 1, 2} and the cube root is taking its principal value. We multiply them by cis with these
angles to preserve the fact that 𝑠𝑡 = 𝑞, since otherwise it would produce another result:

3
√

𝑞 ±
√

𝑞2 − 𝑝3 ⋅ cis 2𝜋𝑘
3

⋅
3
√

𝑞 ∓
√

𝑞2 − 𝑝3 ⋅ cis
(

2𝜋 − 2𝜋𝑘
3

)

= 3

√

(

𝑞 ±
√

𝑞2 − 𝑝3
)(

𝑞 ∓
√

𝑞2 − 𝑝3
)

⋅ cis 2𝜋

= 3
√

𝑞2 − (𝑞2 + 𝑝3)
= 𝑝.

Thus, we have

𝑦 = 𝑠 + 𝑡 =
3
√

𝑞 ±
√

𝑞2 − 𝑝3 ⋅ cis 2𝜋𝑘
3

+
3
√

𝑞 ∓
√

𝑞2 − 𝑝3 ⋅ cis
(

2𝜋 − 2𝜋𝑘
3

)

.

To get 𝑥, we substitute 𝑥 = 𝑦 − 𝑏
3 to get

𝑥 =
3
√

𝑞 ±
√

𝑞2 − 𝑝3 ⋅ cis 2𝜋𝑘
3

+
3
√

𝑞 ∓
√

𝑞2 − 𝑝3 ⋅ cis
(

2𝜋 − 2𝜋𝑘
3

)

− 𝑏
3
.

You could substitute our values of 𝑝, 𝑞 in terms of 𝑏, 𝑐, 𝑑 to get a monstrous equation for 𝑥 in terms of only
𝑏, 𝑐, 𝑑... but no thanks.

(g) What if we started with 𝑎𝑥3 + 𝑏𝑥2 + 𝑐𝑥 + 𝑑 = 0, with a coefficient in front of the 𝑥3 term as
well? Can you come up with a formula for 𝑥?

Sure! We divide through the equation by 𝑎:

𝑎𝑥3 + 𝑏𝑥2 + 𝑐𝑥 + 𝑑
𝑎

= 0

⟹ 𝑥3 + 𝑏
𝑎
+ 𝑐

𝑎
+ 𝑑

𝑎
= 0.

We can then attack this as we already did, setting 𝑏′ = 𝑏
𝑎 , 𝑐′ = 𝑐

𝑎 and 𝑑′ = 𝑑
𝑎 , then applying the formula.
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32. Starting with the same cubic as in problem 31b.

(a) Let 𝑐 = cos 𝜃. Remember that cos 3𝜃 = 4𝑐3 − 3𝑐, as we proved. Substitute 𝑦 = 2𝑐
√

𝑝 into
𝑦3 = 3𝑝𝑦 + 2𝑞 to obtain 4𝑐3 − 3𝑐 = 𝑞

𝑝3∕2 .

We substitute and proceed:

𝑦3 = 3𝑝𝑦 + 2𝑞

(2𝑐
√

𝑝)3 = 3𝑝(2𝑐
√

𝑝) + 2𝑞

8𝑐3𝑝3∕2 = 6𝑐𝑝3∕2 + 2𝑞

8𝑐3𝑝3∕2 − 6𝑐𝑝3∕2 = 2𝑞

4𝑐3 − 3𝑐 =
2𝑞

2𝑝3∕2
=

𝑞
𝑝3∕2

.

(b) Provided that 𝑞2 ≤ 𝑝3, show that 𝑦 = 2
√

𝑝 cos
(

1
3 (𝜃 + 2𝜋𝑛)

)

, where 𝑛 is an integer. Why does
this yield all three solutions?

This isn’t actually hard. We know that cos 3𝜃 = 4𝑐3 − 3𝑐 = 𝑞
𝑝3∕2 , so there are three possible values for

cos 𝜃 = 𝑐. Namely, if 𝜃0 =
1
3 cos

−1 𝑞
𝑝3∕2 is the principal value, then we also have unique solutions

𝜃1 =
2𝜋
3

+ 𝜃0, 𝜃2 =
4𝜋
3

+ 𝜃0,

because multiplying these by 3 to get 3𝜃 just adds a multiple of 2𝜋. Indeed, we have

𝑐 = cos 1
3
(𝜃 + 2𝜋𝑛)

as a solution for any integer 𝑛. Substituting into the expression for 𝑦, we get

𝑦 = 2𝑐
√

𝑝 = 2 cos
(1
3
(𝜃 + 2𝜋𝑛)

)

√

𝑝,

as desired. This yields all three solutions because, as we observed, the only unique values this makes
are for 𝑛 ∈ {0, 1, 2}.

Note that if 𝑞2 > 𝑝3, then this strategy actually still works, but you have to define cos (and cos−1) over a
larger, complex domain. This is certainly possible though!

(c) Explain how you would find 𝜃 from 𝑝 and 𝑞, and how we would use what we have found to
solve an arbitrary cubic 𝑎𝑥3 + 𝑏𝑥2 + 𝑐𝑥 + 𝑑 = 0.

We have cos 3𝜃 = 𝑞
𝑝3∕2 , so

𝜃 = cos−1
𝑞

𝑝3∕2
.

The steps to solving an arbitrary cubic are the following:

1. Divide through by 𝑎 to get a new cubic 𝑥3 + 𝑏′𝑥2 + 𝑐′𝑥 + 𝑑′ = 0.

2. Compute 𝑝 = 𝑏′2

9 − 𝑐′

3 and 𝑞 = 𝑏′𝑐′

6 − 𝑏′3

27 − 𝑑′

2 .

3. Compute 𝜃 = cos−1 𝑞
𝑝3∕2 .

4. Substitute this value of 𝜃 into 𝑥 = 𝑦 − 𝑏
3 = 2

√

𝑝 cos
(

1
3 (𝜃 + 2𝜋𝑛)

)

− 𝑏
3 , where 𝑛 ∈ {0, 1, 2}.

These two problems were a doozy! This method of solving the cubic was known to French mathematician
François Viète in the late 16th century. It also has a very pretty geometric interpretation. Wikipedia gives excel-
lent details here: https://en.wikipedia.org/wiki/Cubic_equation\#Geometric_interpretation_of_the_roots.
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7 Your Daily Dose of Vitamin 𝑖

1. We will use complex numbers to find identities for cot. Use Pascal’s triangle to expand the
following:

(a) (𝑎 + 𝑏)3

(𝑎 + 𝑏)3 = 𝑎3 + 3𝑎2𝑏 + 3𝑎𝑏2 + 𝑏3.
(b) (𝑎 + 𝑏)4

(𝑎 + 𝑏)4 = 𝑎4 + 4𝑎3𝑏 + 6𝑎2𝑏2 + 4𝑎𝑏3 + 𝑏4.
(c) (𝑎 + 𝑏)5

(𝑎 + 𝑏)5 = 𝑎5 + 5𝑎4𝑏 + 10𝑎3𝑏2 + 10𝑎2𝑏3 + 5𝑎𝑏4 + 𝑏5.

1. (cont.) Then substitute 𝑏 = 𝑖 =
√

−1 and expand:

(d) (𝑎 + 𝑖)3

(𝑎 + 𝑏)3 = 𝑎3 + 3𝑎2𝑏 + 3𝑎𝑏2 + 𝑏3 = 𝑎3 + 3𝑎2𝑖 − 3𝑎 − 𝑖.
(e) (𝑎 + 𝑖)4

(𝑎 + 𝑏)4 = 𝑎4 + 4𝑎3𝑏 + 6𝑎2𝑏2 + 4𝑎𝑏3 + 𝑏4 = 𝑎4 + 4𝑎3𝑖 − 6𝑎2 − 4𝑎𝑖 + 1.
(f) (𝑎 + 𝑖)5

(𝑎 + 𝑖)5 = 𝑎5 + 5𝑎4𝑏 + 10𝑎3𝑏2 + 10𝑎2𝑏3 + 5𝑎𝑏4 + 𝑏5 = 𝑎5 + 5𝑎4𝑖 − 10𝑎3 − 10𝑎2𝑖 + 5𝑎 + 𝑖.
1. (cont.) Finally, substitute 𝑎 = cot 𝜃 and expand:

(g) (cot 𝜃 + 𝑖)3

(cot 𝜃 + 𝑖)3 = 𝑎3 + 3𝑎2𝑖 − 3𝑎 − 𝑖 = (cot3 𝜃 − 3 cot 𝜃) + 𝑖(3 cot2 𝜃 − 1).
(h) (cot 𝜃 + 𝑖)4

(cot 𝜃 + 𝑖)4 = 𝑎4 + 4𝑎3𝑖 − 6𝑎2 − 4𝑎𝑖 + 1 = (cot4 𝜃 − 6 cot2 𝜃 + 1) + (4 cot3 𝜃 − 4 cot 𝜃).
(i) (cot 𝜃 + 𝑖)5

(cot 𝜃 + 𝑖)5 = 𝑎5 + 5𝑎4𝑖 − 10𝑎3 − 10𝑎2𝑖 + 5𝑎 + 𝑖 = (cot5 𝜃 − 10 cot3 𝜃 + 5 cot 𝜃) + 𝑖(5 cot4 𝜃 − 10 cot2 𝜃 + 1).
1. (cont.) Consider 𝑧 = 𝑖 + cot 𝜃.

(j) Use the above results to find identities for (i) cot 3𝜃, (ii) cot 4𝜃, and (iii) cot 5𝜃.

i. cot 3𝜃

Given the right triangle formed by 𝑧 = 𝑖+cot 𝜃 in Figure 7, we have tan(Arg 𝑧) = 1
cot 𝜃 = tan 𝜃, so Arg 𝑧 = 𝜃

and 𝑧 = 𝑟 cis 𝜃.

1

𝑧 = 𝑖 + cot 𝜃

cot 𝜃

𝜃
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Figure 1: Arg(𝑖 + cot 𝜃) = 𝜃.

Thus, we have

cot 3𝜃 = cos 3𝜃
sin 3𝜃

=
Re(cis 3𝜃)
Im(cis 3𝜃)

=
Re(𝑟3 cis 3𝜃)
Im(𝑟3 cis 3𝜃)

=
Re(𝑧3)
Im(𝑧3)

.

We substitute in our expression for 𝑧3, (cot3 𝜃 − 3 cot 𝜃) + 𝑖(3 cot2 𝜃 − 1):

cot 3𝜃 = cot3 𝜃 − 3 cot 𝜃
3 cot2 𝜃 − 1

.

i. cot 4𝜃

We proceed in the same way as the last subproblem.

cot 4𝜃 = cos 4𝜃
sin 4𝜃

=
Re(cis 4𝜃)
Im(cis 4𝜃)

=
Re(𝑟4 cis 4𝜃)
Im(𝑟4 cis 4𝜃)

=
Re(𝑧4)
Im(𝑧4)

cot 4𝜃 = cot4 𝜃 − 6 cot2 𝜃 + 1
4 cot3 𝜃 − 4 cot 𝜃

.

i. cot 5𝜃

We proceed in the same way as the last subproblem.

cot 5𝜃 = cos 5𝜃
sin 5𝜃

=
Re(cis 5𝜃)
Im(cis 5𝜃)

=
Re(𝑟5 cis 5𝜃)
Im(𝑟5 cis 5𝜃)

=
Re(𝑧5)
Im(𝑧5)

= cot5 𝜃 − 10 cot3 𝜃 + 5 cot 𝜃
5 cot4 𝜃 − 10 cot2 𝜃 + 1

.

(k) Graph 𝑧, 𝑧2, 𝑧3, 𝑧4, and 𝑧5, with 𝜃 ≈ 75◦. What is your solution method?

To graph these, I first calculated the approximate magnitude of 𝑧, which is how many times each subse-
quent power will be scaled by. We have |1 + cot 75◦| ≈ 1.268, so we only need to scale by about 5

4 each time.
Of course, we rotate by about 75◦ each time.
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𝑦

𝑥

𝑧

𝑧2

𝑧3

𝑧4

𝑧5

Figure 2: Graphs of 𝑧, 𝑧2, 𝑧3, 𝑧4, and 𝑧5.

2. Compute (1 + 𝑖)𝑛 for 𝑛 = 3, 4, 5,…. Can you find a general pattern?

We have

(1 + 𝑖)3 = 13 + 3𝑖 − 3 − 𝑖 = −2 − 2𝑖

(1 + 𝑖)4 = 14 + 4𝑖 − 6 − 6𝑖 + 1 = −4 − 2𝑖

(1 + 𝑖)5 = 15 + 5𝑖 − 10 − 10𝑖 + 5 + 𝑖 = −4 − 4𝑖.

We can find the pattern by representing 1 + 𝑖 =
√

2 cis 45◦. This shows that it has period 8 and let’s us
find an expression for (1 + 1)𝑛:

(1 + 𝑖)𝑛 =
(
√

2 cis 45◦
)𝑛

= 2𝑛∕2 cis
(𝑛𝜋

4

)

.

3. Expand and graph cis𝑛 𝜃 for 𝑛 = 2, 3, 4,….

Let cos 𝜃 = 𝑐 and sin 𝜃 = 𝑠. We have

(𝑐 + 𝑖𝑠)2 = 𝑐2 + 2𝑐𝑠𝑖 − 𝑠2 = (𝑐2 − 𝑠2) + 𝑖(2𝑐𝑠)

(𝑐 + 𝑖𝑠)3 = 𝑐3 + 3𝑐2𝑠𝑖 − 3𝑐𝑠2 − 𝑠3𝑖 = (𝑐3 − 3𝑐𝑠2) + 𝑖(3𝑐2𝑠 − 𝑠3)

(𝑐 + 𝑖𝑠)4 = 𝑐4 + 4𝑐3𝑠𝑖 − 6𝑐2𝑠2 − 4𝑐𝑠3𝑖 + 𝑠4 = (𝑐4 − 6𝑐2𝑠2 + 𝑠4) + 𝑖(4𝑐3𝑠 − 4𝑐𝑠3)

(𝑐 + 𝑖𝑠)5 = 𝑐5 + 5𝑐4𝑠𝑖 − 10𝑐3𝑠2 − 10𝑐2𝑠3𝑖 + 5𝑐𝑠4 + 𝑠5𝑖 = (𝑐5 − 10𝑐3𝑠2 + 5𝑐𝑠4) + 𝑖(5𝑐4𝑠 − 10𝑐2𝑠3 + 𝑠5).

The graphs of cis𝑛 𝜃 for 𝜃 ≈ 50◦ are shown in Figure 3 below.
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𝑦

𝑥

cis 𝜃
cis2 𝜃

cis3 𝜃

cis4 𝜃

cis5 𝜃
Figure 3: Graphs of cis𝑛 𝜃 for 𝜃 ≈ 50◦.

(a) Why is the real part cos 𝑛𝜃 and the imaginary part sin 𝑛𝜃?

By DeMoivre’s theorem, cis𝑛 𝜃 = cis 𝑛𝜃, which by definition has Im(cis 𝑛𝜃) = cos 𝑛𝜃 and Re(cis 𝑛𝜃) = sin 𝑛𝜃.

(b) Use your results to write identities for cos 𝑛𝜃 and sin 𝑛𝜃 for 𝑛 = 2, 3, 4, 5.

Here they are. Again, let cos 𝜃 = 𝑐 and sin 𝜃 = 𝑠:

cos 2𝜃 = Re(cis 2𝜃) = 𝑐2 − 𝑠2

cos 3𝜃 = Re(cis 3𝜃) = 𝑐3 − 3𝑐𝑠2

cos 4𝜃 = Re(cis 4𝜃) = 𝑐4 − 6𝑐2𝑠2 + 𝑠4

cos 5𝜃 = Re(cis 5𝜃) = 𝑐5 − 10𝑐3𝑠2 + 5𝑐𝑠4

sin 2𝜃 = Im(cis 2𝜃) = 2𝑐𝑠

sin 3𝜃 = Im(cis 3𝜃) = 3𝑐2𝑠 − 𝑠3

sin 4𝜃 = Im(cis 4𝜃) = 4𝑐3𝑠 − 4𝑐𝑠3

sin 5𝜃 = Im(cis 5𝜃) = 5𝑐4𝑠 − 10𝑐2𝑠3 + 𝑠5.

4. Compute cos 7◦+cos 79◦+cos 151◦+cos 223◦+cos 295◦ without a calculator. (Hint: what does this
have to do with complex numbers?)

These numbers look random, but a closer inspection reveals they are in arithmetic progression, with
starting term 7 and increasing 72◦ each time. That’s the rotation of a pentagon!

We rewrite this as the real component of a sum of cises, then manipulate and evaluate:

cos 7◦ + cos 79◦ + cos 151◦ + cos 223◦ + cos 295◦ = Re(cis 7◦ + cis 79◦ + cis 151◦ + cis 223◦ + cis 295◦)
= Re((cis 7◦)(cis 0◦ + cis 72◦ + cis 144◦ + cis 216◦ + cis 288◦))
= Re((cis 7◦)(0))
= Re(0)
= 0.

Note that going from the second to third step, we used the fact that the cis expressions are the vertices
of a regular pentagon, which sum to 0. If you want to be more formal about it, a fun way to prove that
cis 0◦ + cis 72◦ + cis 144◦ + cis 216◦ + cis 288◦ = 0 is to set it to Ξ and calculate:
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Ξ ⋅ cis 72◦ = (cis 0◦ + cis 72◦ + cis 144◦ + cis 216◦ + cis 288◦) cis 72◦

= cis 72◦ + cis 144◦ + cis 216◦ + cis 288◦ + cis 360◦

= cis 72◦ + ... + cis 288◦ + cis 0◦

= Ξ.

If Ξ ⋅ (something that’s not one) = Ξ, then Ξ must be 0.

5. Factor the following:

(a) 𝑥6 − 1 as a difference of squares

We substitute 𝑦 = 𝑥3, giving 𝑦2 − 1 = (𝑦 + 1)(𝑦 − 1). Substituting back in, we get

(𝑥3 + 1)(𝑥3 − 1).

(b) 𝑥6 − 1 as a difference of cubes

We now substitute 𝑦 = 𝑥2, giving 𝑦3 − 1 = (𝑦 − 1)(𝑦2 + 𝑦 + 1). Substituting back in, we get

(𝑥2 − 1)(𝑥4 + 𝑥2 + 1)

.

(c) 𝑥4 + 𝑥2 + 1 over the real numbers

This one isn’t as obvious. We substitute 𝑦 = 𝑥2 to get 𝑦2 + 𝑦 + 1 and find the quadratic’s zeroes:

𝑦 = −1±
√

1−4
2 = −1±𝑖

√

3
2 .

So it is irreducible over the reals.

(d) 𝑥6 − 1 completely

We already broke it down into (𝑥3 + 1) and (𝑥3 − 1). Going further, we have 𝑥3 + 1 = (𝑥 + 1)(𝑥2 − 𝑥 + 1)
and 𝑥3 − 1 = (𝑥 − 1)(𝑥2 + 𝑥 + 1). To break apart the last two quadratics, we find their zeros:

𝑥2 − 𝑥 + 1 = 0 ⟹ 𝑥 =
1 ± 𝑖

√

3
2

⟹

(

𝑥 −
1 − 𝑖

√

3
2

)(

𝑥 −
1 + 𝑖

√

3
2

)

.

𝑥2 + 𝑥 + 1 = 0 ⟹ 𝑥 =
−1 ± 𝑖

√

3
2

⟹

(

𝑥 +
1 − 𝑖

√

3
2

)(

𝑥 +
1 + 𝑖

√

3
2

)

.

Combining all these, we get the complete factorization over the complex numbers:

𝑥6 − 1 = (𝑥 + 1)

(

𝑥 −
1 − 𝑖

√

3
2

)(

𝑥 −
1 + 𝑖

√

3
2

)

(𝑥 − 1)

(

𝑥 +
1 − 𝑖

√

3
2

)(

𝑥 +
1 + 𝑖

√

3
2

)

.

(e) 𝑥4 + 𝑥2 + 1 completely

We could do a lot of work again, or we could observe that 𝑥4 + 𝑥2 + 1 = 𝑥6−1
𝑥2−1 = 𝑥6−1

(𝑥+1)(𝑥−1) . Removing the

denominator’s terms from our factorization of 𝑥6 − 1 we found in the last subproblem, we get

𝑥4 + 𝑥2 + 1 =

(

𝑥 −
1 − 𝑖

√

3
2

)(

𝑥 −
1 + 𝑖

√

3
2

)(

𝑥 +
1 − 𝑖

√

3
2

)(

𝑥 +
1 + 𝑖

√

3
2

)

.

6. Let 𝑓 (𝑧) = 𝑧+1
𝑧−1 .

(a) Without a calculator, compute 𝑓 2014(𝑧).
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This seems terrifying. Let’s try computing 𝑓 2(𝑧) and perhaps 𝑓 3(𝑧).

𝑓 2(𝑧) =
𝑓 (𝑧) + 1
𝑓 (𝑧) − 1

=
𝑧+1
𝑧−1 + 1
𝑧+1
𝑧−1 − 1

=
2𝑧
𝑧−1
2

𝑧−1

= 𝑧.

Oh.
Since 2014 is even, we have 𝑓 2014(𝑧) = (𝑓 2)1007(𝑧) = 𝑧.

(b) What if you replace 2014 with the current year?

Let 𝑦 be the current year. As I write this, it is 1492.
If 𝑦 is even, then 𝑓 𝑦(𝑧) = (𝑓 2)𝑦∕2(𝑧) = 𝑧. If 𝑦 is odd, then 𝑓 𝑦(𝑧) = 𝑓 ((𝑓 2)(𝑦−1)∕2(𝑧)) = 𝑓 (𝑧) = 𝑧+1

𝑧−1 .

7. Find Im
(

(cis 12◦ + cis 48◦)6
)

.

These are some weird looking angles. Thinking back to some older problems, however, the resultant angle
of the addition may be tractable. We draw a diagram, shown in Figure 4.

𝑦

𝑥

cis 48◦

cis 12◦

48◦

12◦

𝑥
48◦ − 𝑥

132◦

Figure 4: Adding cis 12◦ + cis 48◦.

Consider the isosceles triangle. The apex has angle measure 132◦ + 12◦ = 144◦, so the base angles are
each 𝑥 = 180◦−144◦

2 = 18◦. But Arg(cis 12◦ + cis 48◦) = 48◦ − 𝑥 = 30◦!
That’s a familiar angle. Indeed, we have 𝑧 = cis 12◦ +cis 48◦ = 𝑟 cis 30◦ for some 𝑟. It doesn’t really matter

which 𝑟, because

Im((𝑟 cis 30◦)6) = Im(𝑟6 cis 180◦) = Im(−𝑟6) = 0.

8. Let 𝑥 satisfy the equation 𝑥 + 1
𝑥 = 2 cos 𝜃.

(a) Compute 𝑥2 + 1
𝑥2 in terms of 𝜃.

Squaring the left hand side will get us some terms that look close to what we want.

(

𝑥 + 1
𝑥

)2
= 𝑥2 + 2 + 1

𝑥2
.

So 𝑥2 + 1
𝑥2 = (2 cos 𝜃)2 − 2 = 4 cos2 𝜃 − 2 = 2(2 cos2 𝜃 − 1) = 2 cos 2𝜃. Huh.

(b) Compute 𝑥𝑛 + 1
𝑥𝑛 in terms of 𝑛 and 𝜃.

It’s unclear how to start, so we might as well try to compute 𝑥3 + 1
𝑥3 in the same way.
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(

𝑥 + 1
𝑥

)3
=

𝑥3 + 3𝑥 + 3
𝑥
+ 1

𝑥3
= 8 cos3 𝜃

𝑥3 + 3
(

𝑥 + 1
𝑥

)

⏟⏞⏟⏞⏟
2 cos 𝜃

+ 1
𝑥3

= 8 cos3 𝜃

𝑥3 + 1
𝑥3

= 8 cos3 𝜃 − 6 cos 𝜃.

Now what? The astute among you may recognize that 8 cos3 𝜃 − 6 cos 𝜃 = 2 cos 3𝜃, at which point you
could make a conjecture (and could jump ahead). But suppose we didn’t find that.

We know that 𝑥2 + 1
𝑥2 = 2 cos 2𝜃. By analogy, if we make the substitution 𝑦 = 𝑥2 and 𝜙 = 2𝜃, we get that

𝑦 + 1
𝑦 = 2 cos𝜙, and thus 𝑦2 + 1

𝑦2 = 2 cos 2𝜙 ⟹ 𝑥4 + 1
𝑥4 = 2 cos 4𝜃. In general,

𝑥2
𝑚
+ 1

𝑥2𝑚
= 2 cos 2𝑚𝜃.

The exponent on 𝑥, in this case 2𝑚, is the same as the multiple of 𝜃. Pretty sus. We’ve solved the problem
for 𝑛 which are powers of two, but we conjecture that the relationship holds for all integers 𝑛. To be explicit,
we want to show that

𝑥𝑛 + 1
𝑥𝑛

= 2 cos 𝑛𝜃.

There’s a couple of ways to do it. But seeing 𝑥𝑛 and cos 𝑛𝜃 in the same place immediately recalls expo-
nentiating cis 𝜃. So, let’s try rewriting the problem a bit by entering into the complex plane. Let 𝑥 = 𝑟 cis𝜙,
which we really should have done earlier. Then we’re given that 𝑟 cis𝜙 + 1

𝑟 cis𝜙 = 2 cos 𝜃. Working further,

2 cos 𝜃 = 𝑟 cis𝜙 + 1
𝑟
cis(−𝜙)

= 𝑟 cos𝜙 + 1
𝑟
cos𝜙 + 𝑖(𝑟 sin𝜙 − 1

𝑟
sin𝜙)

=
(

𝑟 + 1
𝑟

)

cos𝜙 + 𝑖
(

𝑟 − 1
𝑟

)

sin𝜙

The imaginary part needs to be zero, since the left hand side is real. So either 𝑟 = 1
𝑟 or sin𝜙 = 0.

Let’s examine each case. In the first case, 𝑟 = 1 (it can’t be −1 since 𝑟 ≥ 0. In the second case, we have
cos𝜙 = ±1, and substituting, we get

2 cos 𝜃 = ±
(

𝑟 + 1
𝑟

)

.

That’s not helpful... except now we know that 𝑟 is real and ≥ 0. Considering 𝑟+ 1
𝑟 , we see that it approaches

∞ as 𝑟 → 0. What range of values does it make? Graphing it shows that it has a range of [2,∞), reaching its
minimum at 𝑟 = 1. Another way to prove this is via AM-GM with 𝑥 = 2𝑟 and 𝑦 = 2

𝑟 :

𝑥 + 𝑦
2

≥
√

𝑥𝑦 ⟹ 𝑟 + 1
𝑟
≥
√

2𝑟
(2
𝑟

)

= 2.

But the range of 2 cos 𝜃 is [−2, 2], and the only possible value of the equation is the intersection of their
ranges, aka 2. So 𝑟 = 1 no matter what. That’s damn useful, because then

2 cos 𝜃 =
(

𝑟 + 1
𝑟

)

cos𝜙 + 𝑖
(

𝑟 − 1
𝑟

)

sin𝜙 From before

= 2 cos𝜙.
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So cos𝜙 = cos 𝜃. We wish to find an expression for 𝑥𝑛 + 1
𝑥𝑛 .

𝑥𝑛 + 1
𝑥𝑛

= 𝑟𝑛 cis𝑛 𝜙 + 1
𝑟𝑛

cis𝑛(−𝜙)

= 𝑟𝑛(cos 𝑛𝜙 + sin 𝑛𝜙) + 1
𝑟𝑛
(cos 𝑛𝜙 − sin 𝑛𝜙)

= cos 𝑛𝜙 + sin 𝑛𝜙 + cos 𝑛𝜙 − sin 𝑛𝜙
= 2 cos 𝑛𝜙
= 2 cos 𝑛𝜃.

Note that in the last step, we have to be careful, but cosine does have this property. Anyway, that’s a gg,
QED.

71



8 Matrix Multiplication

1. The three-post snap group can be represented by a set of graphs, each with three towns. The
posts are the towns and the elastic bands are the roads. For example,

𝐴 =

fr
om

1
2
3

to

⎡

⎢

⎢

⎣

1
1

2
0

3
0

0 0 1
0 1 0

⎤

⎥

⎥

⎦

⟷

1

2

3

(a) Draw the graphs and transportation matrices for this group.

Here they are!

𝐼 =
⎡

⎢

⎢

⎣

1 0 0
0 1 0
0 0 1

⎤

⎥

⎥

⎦

⟷

1

2

3
𝐴 =

⎡

⎢

⎢

⎣

1 0 0
0 0 1
0 1 0

⎤

⎥

⎥

⎦

⟷

1

2

3

𝐵 =
⎡

⎢

⎢

⎣

0 0 1
0 1 0
1 0 0

⎤

⎥

⎥

⎦

⟷

1

2

3
𝐶 =

⎡

⎢

⎢

⎣

0 1 0
1 0 0
0 0 1

⎤

⎥

⎥

⎦

⟷

1

2

3

𝐷 =
⎡

⎢

⎢

⎣

0 0 1
1 0 0
0 1 0

⎤

⎥

⎥

⎦

⟷

1

2

3
𝐸 =

⎡

⎢

⎢

⎣

0 1 0
0 0 1
1 0 0

⎤

⎥

⎥

⎦

⟷

1

2

3

(b) Try a few multiplications and notice the isomorphism to the snap group.

Before, we found that 𝐴 ∙ 𝐵 = 𝐸. But does this work with the matrices? We have

𝐴𝐵 =
⎡

⎢

⎢

⎣

1 0 0
0 0 1
0 1 0

⎤

⎥

⎥

⎦

⎡

⎢

⎢

⎣

0 0 1
0 1 0
1 0 0

⎤

⎥

⎥

⎦

=
⎡

⎢

⎢

⎣

⟨1, 0, 0⟩ ⋅ ⟨0, 0, 1⟩ ⟨1, 0, 0⟩ ⋅ ⟨0, 1, 0⟩ ⟨1, 0, 0⟩ ⋅ ⟨1, 0, 0⟩
⟨0, 0, 1⟩ ⋅ ⟨0, 0, 1⟩ ⟨0, 0, 1⟩ ⋅ ⟨0, 1, 0⟩ ⟨0, 0, 1⟩ ⋅ ⟨1, 0, 0⟩
⟨0, 1, 0⟩ ⋅ ⟨0, 0, 1⟩ ⟨0, 1, 0⟩ ⋅ ⟨0, 1, 0⟩ ⟨0, 1, 0⟩ ⋅ ⟨1, 0, 0⟩

⎤

⎥

⎥

⎦

=
⎡

⎢

⎢

⎣

0 0 1
1 0 0
0 1 0

⎤

⎥

⎥

⎦

= 𝐷.

Huh?
The issue is simple. Matrix multiplication, just like the snap operation, is not commutative, and we need to

flip the order of the matrices so it represents taking 𝐵 first, then 𝐴. After all, that’s what we defined 𝐴 ∙ 𝐵 to
be.
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𝐵𝐴 =
⎡

⎢

⎢

⎣

0 0 1
0 1 0
1 0 0

⎤

⎥

⎥

⎦

⎡

⎢

⎢

⎣

1 0 0
0 0 1
0 1 0

⎤

⎥

⎥

⎦

=
⎡

⎢

⎢

⎣

⟨0, 0, 1⟩ ⋅ ⟨1, 0, 0⟩ ⟨0, 0, 1⟩ ⋅ ⟨0, 0, 1⟩ ⟨0, 0, 1⟩ ⋅ ⟨0, 1, 0⟩
⟨0, 1, 0⟩ ⋅ ⟨1, 0, 0⟩ ⟨0, 1, 0⟩ ⋅ ⟨0, 0, 1⟩ ⟨0, 1, 0⟩ ⋅ ⟨0, 1, 0⟩
⟨1, 0, 0⟩ ⋅ ⟨1, 0, 0⟩ ⟨1, 0, 0⟩ ⋅ ⟨0, 0, 1⟩ ⟨1, 0, 0⟩ ⋅ ⟨0, 1, 0⟩

⎤

⎥

⎥

⎦

=
⎡

⎢

⎢

⎣

0 1 0
0 0 1
1 0 0

⎤

⎥

⎥

⎦

= 𝐸.

This works for any of the matrices.

2. Using 3 × 3 matrices 𝐴 and 𝐵 from this section, compute

For reference, the matrices are

𝐴 =

⎡

⎢

⎢

⎢

⎣

1 1 2 2
1 1 1 0
2 1 1 1
2 0 1 1

⎤

⎥

⎥

⎥

⎦

, 𝐵 =

⎡

⎢

⎢

⎢

⎣

1 1 0 0
0 1 1 0
0 0 1 1
1 0 0 1

⎤

⎥

⎥

⎥

⎦

.

(a) 𝐴𝐴 = 𝐴2

We use the column vector/row vector approach.

𝐴𝐴 =

⎡

⎢

⎢

⎢

⎣

1 1 2 2
1 1 1 0
2 1 1 1
2 0 1 1

⎤

⎥

⎥

⎥

⎦

⎡

⎢

⎢

⎢

⎣

1 1 2 2
1 1 1 0
2 1 1 1
2 0 1 1

⎤

⎥

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎣

⟨1, 1, 2, 2⟩ ⋅ ⟨1, 1, 2, 2⟩ ⟨1, 1, 2, 2⟩ ⋅ ⟨1, 1, 1, 0⟩ ⟨1, 1, 2, 2⟩ ⋅ ⟨2, 1, 1, 1⟩ ⟨1, 1, 2, 2⟩ ⋅ ⟨2, 0, 1, 1⟩
⟨1, 1, 1, 0⟩ ⋅ ⟨1, 1, 2, 2⟩ ⟨1, 1, 1, 0⟩ ⋅ ⟨1, 1, 1, 0⟩ ⟨1, 1, 1, 0⟩ ⋅ ⟨2, 1, 1, 1⟩ ⟨1, 1, 1, 0⟩ ⋅ ⟨2, 0, 1, 1⟩
⟨2, 1, 1, 1⟩ ⋅ ⟨1, 1, 2, 2⟩ ⟨2, 1, 1, 1⟩ ⋅ ⟨1, 1, 1, 0⟩ ⟨2, 1, 1, 1⟩ ⋅ ⟨2, 1, 1, 1⟩ ⟨2, 1, 1, 1⟩ ⋅ ⟨2, 0, 1, 1⟩
⟨2, 0, 1, 1⟩ ⋅ ⟨1, 1, 2, 2⟩ ⟨2, 0, 1, 1⟩ ⋅ ⟨1, 1, 1, 0⟩ ⟨2, 0, 1, 1⟩ ⋅ ⟨2, 1, 1, 1⟩ ⟨2, 0, 1, 1⟩ ⋅ ⟨2, 0, 1, 1⟩

⎤

⎥

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎣

10 4 7 6
4 3 4 3
7 4 7 6
6 3 6 6

⎤

⎥

⎥

⎥

⎦

.

(b) 𝐴𝐵

𝐴𝐵 =

⎡

⎢

⎢

⎢

⎣

1 1 2 2
1 1 1 0
2 1 1 1
2 0 1 1

⎤

⎥

⎥

⎥

⎦

⎡

⎢

⎢

⎢

⎣

1 1 0 0
0 1 1 0
0 0 1 1
1 0 0 1

⎤

⎥

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎣

⟨1, 1, 2, 2⟩ ⋅ ⟨1, 1, 0, 0⟩ ⟨1, 1, 2, 2⟩ ⋅ ⟨1, 1, 0, 0⟩ ⟨1, 1, 2, 2⟩ ⋅ ⟨1, 1, 0, 0⟩ ⟨1, 1, 2, 2⟩ ⋅ ⟨1, 1, 0, 0⟩
⟨1, 1, 1, 0⟩ ⋅ ⟨0, 1, 1, 0⟩ ⟨1, 1, 1, 0⟩ ⋅ ⟨0, 1, 1, 0⟩ ⟨1, 1, 1, 0⟩ ⋅ ⟨0, 1, 1, 0⟩ ⟨1, 1, 1, 0⟩ ⋅ ⟨0, 1, 1, 0⟩
⟨2, 1, 1, 1⟩ ⋅ ⟨0, 0, 1, 1⟩ ⟨2, 1, 1, 1⟩ ⋅ ⟨0, 0, 1, 1⟩ ⟨2, 1, 1, 1⟩ ⋅ ⟨0, 0, 1, 1⟩ ⟨2, 1, 1, 1⟩ ⋅ ⟨0, 0, 1, 1⟩
⟨2, 0, 1, 1⟩ ⋅ ⟨1, 0, 0, 1⟩ ⟨2, 0, 1, 1⟩ ⋅ ⟨1, 0, 0, 1⟩ ⟨2, 0, 1, 1⟩ ⋅ ⟨1, 0, 0, 1⟩ ⟨2, 0, 1, 1⟩ ⋅ ⟨1, 0, 0, 1⟩

⎤

⎥

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎣

3 2 3 4
1 2 2 1
3 3 2 2
3 2 1 2

⎤

⎥

⎥

⎥

⎦

.
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(c) 𝐵𝐴

𝐵𝐴 =

⎡

⎢

⎢

⎢

⎣

1 1 0 0
0 1 1 0
0 0 1 1
1 0 0 1

⎤

⎥

⎥

⎥

⎦

⎡

⎢

⎢

⎢

⎣

1 1 2 2
1 1 1 0
2 1 1 1
2 0 1 1

⎤

⎥

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎣

⟨1, 1, 0, 0⟩ ⋅ ⟨1, 1, 2, 2⟩ ⟨1, 1, 0, 0⟩ ⋅ ⟨1, 1, 1, 0⟩ ⟨1, 1, 0, 0⟩ ⋅ ⟨2, 1, 1, 1⟩ ⟨1, 1, 0, 0⟩ ⋅ ⟨2, 0, 1, 1⟩
⟨0, 1, 1, 0⟩ ⋅ ⟨1, 1, 2, 2⟩ ⟨0, 1, 1, 0⟩ ⋅ ⟨1, 1, 1, 0⟩ ⟨0, 1, 1, 0⟩ ⋅ ⟨2, 1, 1, 1⟩ ⟨0, 1, 1, 0⟩ ⋅ ⟨2, 0, 1, 1⟩
⟨0, 0, 1, 1⟩ ⋅ ⟨1, 1, 2, 2⟩ ⟨0, 0, 1, 1⟩ ⋅ ⟨1, 1, 1, 0⟩ ⟨0, 0, 1, 1⟩ ⋅ ⟨2, 1, 1, 1⟩ ⟨0, 0, 1, 1⟩ ⋅ ⟨2, 0, 1, 1⟩
⟨1, 0, 0, 1⟩ ⋅ ⟨1, 1, 2, 2⟩ ⟨1, 0, 0, 1⟩ ⋅ ⟨1, 1, 1, 0⟩ ⟨1, 0, 0, 1⟩ ⋅ ⟨2, 1, 1, 1⟩ ⟨1, 0, 0, 1⟩ ⋅ ⟨2, 0, 1, 1⟩

⎤

⎥

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎣

2 2 3 2
3 2 2 1
4 1 2 2
3 1 3 3

⎤

⎥

⎥

⎥

⎦

.

(d) 𝐵2

𝐵𝐴 =

⎡

⎢

⎢

⎢

⎣

1 1 0 0
0 1 1 0
0 0 1 1
1 0 0 1

⎤

⎥

⎥

⎥

⎦

⎡

⎢

⎢

⎢

⎣

1 1 0 0
0 1 1 0
0 0 1 1
1 0 0 1

⎤

⎥

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎣

⟨1, 1, 0, 0⟩ ⋅ ⟨1, 0, 0, 1⟩ ⟨1, 1, 0, 0⟩ ⋅ ⟨1, 1, 0, 0⟩ ⟨1, 1, 0, 0⟩ ⋅ ⟨0, 1, 1, 0⟩ ⟨1, 1, 0, 0⟩ ⋅ ⟨0, 0, 1, 1⟩
⟨0, 1, 1, 0⟩ ⋅ ⟨1, 0, 0, 1⟩ ⟨0, 1, 1, 0⟩ ⋅ ⟨1, 1, 0, 0⟩ ⟨0, 1, 1, 0⟩ ⋅ ⟨0, 1, 1, 0⟩ ⟨0, 1, 1, 0⟩ ⋅ ⟨0, 0, 1, 1⟩
⟨0, 0, 1, 1⟩ ⋅ ⟨1, 0, 0, 1⟩ ⟨0, 0, 1, 1⟩ ⋅ ⟨1, 1, 0, 0⟩ ⟨0, 0, 1, 1⟩ ⋅ ⟨0, 1, 1, 0⟩ ⟨0, 0, 1, 1⟩ ⋅ ⟨0, 0, 1, 1⟩
⟨1, 0, 0, 1⟩ ⋅ ⟨1, 0, 0, 1⟩ ⟨1, 0, 0, 1⟩ ⋅ ⟨1, 1, 0, 0⟩ ⟨1, 0, 0, 1⟩ ⋅ ⟨0, 1, 1, 0⟩ ⟨1, 0, 0, 1⟩ ⋅ ⟨0, 0, 1, 1⟩

⎤

⎥

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎣

1 2 1 0
0 1 2 1
1 0 1 2
2 1 0 1

⎤

⎥

⎥

⎥

⎦

.

(e) Which one (𝐴𝐵 and 𝐵𝐴) represents taking a step by walking, then by bus?

Since 𝐴 is walking and 𝐵 is bus, we know that 𝐴𝐵 is a step by walking, then by bus. Unlike most of the
operations we’ve been doing, it is not right-to-left!

One way to conceptualize this is to draw an arrow from “from” to “to” for each matrix, then join the arrows.
For example, for the product 𝐴𝐵, it should look like this:

𝐴𝐵 =

fro
m

𝐴
𝐵
𝐶
𝐷

to

⎡

⎢

⎢

⎢

⎣

𝐴
1

𝐵
1

𝐶
2

𝐷
2

1 1 1 0
2 1 1 1
2 0 1 1

⎤

⎥

⎥

⎥

⎦

fro
m

𝐴
𝐵
𝐶
𝐷

to

⎡

⎢

⎢

⎢

⎣

𝐴
1

𝐵
1

𝐶
0

𝐷
0

0 1 1 0
0 0 1 1
1 0 0 1

⎤

⎥

⎥

⎥

⎦

This arrow shows the order in which paths are taken.

(f) Use your calculator to check your computations of 𝐴2, 𝐴𝐵, 𝐵𝐴, and 𝐵2.

Here’s some instructions on multiplying matrices on various TI calculators:
TI-83/TI-84: Press “2nd” and “𝑥−1,” or if your calculator has it, the “MATRIX” button, to enter the matrix

editing page. Navigate to the “EDIT” menu, then navigate to the desired name for the first matrix. Press enter
to select that matrix, then type in the size and values of the matrix. Repeat this for the second matrix. When
you’re ready to multiply them, press “2nd” and “𝑥−1” again, but stay in the “NAMES” menu. Navigate to the
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first matrix to multiply, and press enter. Repeat this for the second matrix. Finally, pressing enter to calculate
will give us the result of the multiplication (or an error if the dimensions are incorrect).

TI Nspire: Press the button to the bottom left of “
del
←” that looks like “|▮|

{

▮
▮

”. Navigate to the button that

looks like a blank 3 × 3 matrix and press enter. Enter in the size of the first matrix, then the values. Repeat
this process for the second matrix, then multiply the two matrices by pressing enter.

Assuming I didn’t make a large oopsie, those answers are all correct. :P

3. Write a 3 × 3 matrix 𝑇 that shows the following scenario: you can go from town 𝐵 to 𝐶 , 𝐶 to 𝐷,
and 𝐷 to 𝐵 by train, in exactly one way each, and not backwards.

𝑇 =

fro
m

𝐵
𝐶
𝐷

to

⎡

⎢

⎢

⎣

𝐵
1

𝐶
1

𝐷
0

0 1 1
1 0 1

⎤

⎥

⎥

⎦

.

(a) Why can’t you add this matrix to matrices 𝐴 or 𝐵?

They have different dimensions!

(b) Rewrite matrix 𝑇 so that it can be meaningfully added to matrices 𝐴 and 𝐵. What did you
do to its dimensions?

We need 𝑇 to be 4 × 4, and we want the entries 𝐴,𝐵, 𝐶,𝐷 to line up properly. Thus, we insert 0s in the 𝐴
column and 𝐴 row, as shown:

𝑇 =

fro
m

𝐴
𝐵
𝐶
𝐷

to

⎡

⎢

⎢

⎢

⎣

𝐴
0

𝐵
0

𝐶
0

𝐷
0

0 1 1 0
0 0 1 1
0 1 0 1

⎤

⎥

⎥

⎥

⎦

.

4. Evaluate the following:

(a)
4
∑

𝑘=1
𝑘

4
∑

𝑘=1
𝑘 = 1 + 2 + 3 + 4 = 10.

(b)
5
∑

𝑘=0
𝑘2

5
∑

𝑘=0
𝑘2 = 02 + 12 + 22 + 32 + 42 + 52 = 0 + 1 + 4 + 9 + 16 + 25 = 55.

(c)
10
∑

𝑘=1
3

10
∑

𝑘=1
3 = 3 + 3 +⋯ + 3

⏟⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏟
10

= 10 ⋅ 3 = 30.

(d)
𝑛
∑

𝑘=1
𝑘
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𝑛
∑

𝑘=1
𝑘 = 1 + 2 +⋯ + 𝑛

⏟⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏟
𝑛

= (𝑛 + 1) + (𝑛 − 1 + 2) +⋯
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

𝑛∕2

=
𝑛(𝑛 + 1)

2
.

(e)
𝑛
∑

𝑘=1
𝑛

𝑛
∑

𝑘=1
𝑛 = 𝑛 + 𝑛 +⋯ + 𝑛

⏟⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏟
𝑛

= 𝑛2.

(f)
𝑛
∑

𝑘=1
1

𝑛
∑

𝑘=1
1 = 1 + 1 +⋯ + 1

⏟⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏟
𝑛

= 𝑛.

5. The matrix 𝐶𝑇 whose rows are the same as the respective columns of matrix 𝐶 is called the
transpose of 𝐶 . For example,

𝐶 =
[

1 2
3 4

]

, 𝐶𝑇 =
[

1 3
2 4

]

.

(a) Let the elements of 𝐶 be 𝑐𝑖𝑗 and the elements of 𝐶𝑇 be 𝑐′𝑖𝑗 . Write a formula for 𝐶𝑇 in terms
of these elements. That is, 𝑐′𝑖𝑗 =?

We simply have 𝑐′𝑖𝑗 = 𝑐𝑗𝑖; the indices are swapped.

(b) Write
[

2 1 5
4 −2 0

]𝑇
.

We flip it over the main diagonal; since the matrix is not square, we get a matrix with different dimensions!

[

2 1 5
4 −2 0

]𝑇
=
⎡

⎢

⎢

⎣

2 4
1 −2
5 0

⎤

⎥

⎥

⎦

6. Fill in the blanks: Multiplying an 𝑚 × 𝑛 matrix by a(n) × 𝑘 matrix gives a(n) × matrix.

Multiplying an 𝑚 × 𝑛 matrix by a(n) 𝑛 × 𝑘 matrix gives a(n) 𝑚 × 𝑛 matrix.

7. Dogs can eat cats, rats, or mice; cats can eat rats or mice; rats can eat mice.

(a) Make a matrix 𝐸 showing what can eat what.

Let dogs be 𝐷, cats be 𝐶 , rats be 𝑅, and mice be 𝑀 . Then the matrix is straightforward. Note that we put
the prey on the left and predator on top because then following the matrices is going through each step in the
food chain.

𝑇 =

pr
ey

𝐷
𝐶
𝑅
𝑀

predator

⎡

⎢

⎢

⎢

⎣

𝐷
0

𝐶
0

𝑅
0

𝑀
0

1 0 0 0
1 1 0 0
1 1 1 0

⎤

⎥

⎥

⎥

⎦

.

Note that the diagonal is all 0s because no animal eats their own species.
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(b) Draw a directed graph.

The graph is shown in Figure 1.

𝑀 𝑅 𝐶 𝐷

Figure 1: The directed graph of 𝐸.

(c) Calculate and interpret 𝐸2, 𝐸3, 𝐸4.

We have

𝐸2 =

⎡

⎢

⎢

⎢

⎣

0 0 0 0
1 0 0 0
1 1 0 0
1 1 1 0

⎤

⎥

⎥

⎥

⎦

⎡

⎢

⎢

⎢

⎣

0 0 0 0
1 0 0 0
1 1 0 0
1 1 1 0

⎤

⎥

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎣

0 0 0 0
0 0 0 0
1 0 0 0
2 1 0 0

⎤

⎥

⎥

⎥

⎦

.

This means that there are two ways for a mouse’s nutrients to find its way to a dog in two steps (namely,
through a rat and through a cat). Also, there is only one way for a rat to get to a dog in two steps, and only
one way for a mouse to get to a cat in two steps.

We have

𝐸3 = 𝐸𝐸2 =

⎡

⎢

⎢

⎢

⎣

0 0 0 0
1 0 0 0
1 1 0 0
1 1 1 0

⎤

⎥

⎥

⎥

⎦

⎡

⎢

⎢

⎢

⎣

0 0 0 0
0 0 0 0
1 0 0 0
2 1 0 0

⎤

⎥

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎣

0 0 0 0
0 0 0 0
0 0 0 0
1 0 0 0

⎤

⎥

⎥

⎥

⎦

.

This means a mouse can get to a dog in three steps in only one way.
We have

𝐸4 = 𝐸𝐸3 =

⎡

⎢

⎢

⎢

⎣

0 0 0 0
1 0 0 0
1 1 0 0
1 1 1 0

⎤

⎥

⎥

⎥

⎦

⎡

⎢

⎢

⎢

⎣

0 0 0 0
0 0 0 0
0 0 0 0
1 0 0 0

⎤

⎥

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎣

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

⎤

⎥

⎥

⎥

⎦

.

A matrix of all zeroes! That means there are no paths which take four steps, which makes sense.

8.
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Note that as given in the problem, we have

𝑆 =

[

5 1 0 4
3 1 1 0 0

5 1 1 5
4

3
4 0 1

3 2

]

;

𝐶 =
[

5 20 10 0 1 2 5 12
]

.

(a) Unfortunately, if you try to multiply 𝑆 and 𝐶 as given, it won’t work. Why not?

The dimensions aren’t right! 𝑆 is a 2 × 8 matrix, while 𝐶 is a 1 × 8 matrix.

(b) What do you need to do to 𝐶 so they can be multiplied? Explain the dimensions of each
matrix.

We need to transpose 𝐶 , since 𝐶𝑇 is a 8 × 1 matrix. This lets it be multiplied by 𝑆.

(c) Once you’ve fixed matrix 𝐶 , do the multiplication. What are the dimensions of your an-
swer?

We do the multiplication:

𝑆𝐶𝑇 =

[

5 1 0 4
3 1 1 0 0

5 1 1 5
4

3
4 0 1

3 2

]

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

5
20
10
0
1
2
5
12

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

=
[

48
977
12

]

.

We end up with a 2 × 1 matrix. Indeed, 𝑀2×8𝑀8×1 = 𝑀2×1; in some sense the inner dimensions VANISH,
ANNIHILATE, whatever you like, to leave the outer dimensions behind.

9. Matrix multiplication is not necessarily commutative, even when the dimensions of the matrices
suggest it might be. How do we know? Be specific.

One way to know is to just multiply two random matrices together (chosen for computational convenience)
and check for commutativity:

𝐶 =
[

0 0
0 1

]

; 𝐷 =
[

0 1
0 0

]

We compute 𝐶𝐷 and 𝐷𝐶 :

𝐶𝐷 =
[

0 0
0 1

] [

0 1
0 0

]

=
[

0 0
0 0

]

.𝐷𝐶 =
[

0 1
0 0

] [

0 0
0 1

]

=
[

0 1
0 0

]

⟹ 𝐶𝐷 ≠ 𝐷𝐶.

Oof! Matrix multiplication is not commutative.

10. Matrix multiplication is associative, though. Prove that (𝑃𝑋)𝑌 = 𝑃 (𝑋𝑌 ) for

𝑃 =
[

𝑚 𝑛
𝑝 𝑞

]

, 𝑋 =
[

𝑥 𝑦
𝑧 𝑤

]

, 𝑌 =
[

𝑟 𝑠
𝑡 𝑢

]

.
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With great dread, we compute (𝑃𝑋)𝑌 and 𝑃 (𝑋𝑌 ).

(𝑃𝑋)𝑌 =
([

𝑚 𝑛
𝑝 𝑞

] [

𝑥 𝑦
𝑧 𝑤

])[

𝑟 𝑠
𝑡 𝑢

]

=
[

𝑚𝑥 + 𝑛𝑧 𝑚𝑦 + 𝑛𝑤
𝑝𝑥 + 𝑞𝑧 𝑝𝑦 + 𝑞𝑤

] [

𝑟 𝑠
𝑡 𝑢

]

=
[

𝑟(𝑚𝑥 + 𝑛𝑧) + 𝑡(𝑚𝑦 + 𝑛𝑤) 𝑠(𝑚𝑥 + 𝑛𝑧) + 𝑢(𝑚𝑦 + 𝑛𝑤)
𝑟(𝑝𝑥 + 𝑞𝑧) + 𝑡(𝑝𝑦 + 𝑞𝑤) 𝑠(𝑝𝑥 + 𝑞𝑧) + 𝑢(𝑝𝑦 + 𝑞𝑤)

]

=
[

𝑚𝑟𝑥 + 𝑚𝑡𝑦 + 𝑛𝑟𝑧 + 𝑛𝑡𝑤 𝑚𝑠𝑥 + 𝑚𝑢𝑦 + 𝑛𝑠𝑧 + 𝑛𝑢𝑤
𝑝𝑟𝑥 + 𝑝𝑡𝑦 + 𝑞𝑟𝑧 + 𝑞𝑡𝑤 𝑝𝑠𝑥 + 𝑝𝑢𝑦 + 𝑞𝑠𝑧 + 𝑞𝑢𝑤

]

.

𝑃 (𝑋𝑌 ) =
[

𝑚 𝑛
𝑝 𝑞

]([

𝑥 𝑦
𝑧 𝑤

] [

𝑟 𝑠
𝑡 𝑢

])

=
[

𝑚 𝑛
𝑝 𝑞

] [

𝑥𝑟 + 𝑦𝑡 𝑥𝑠 + 𝑦𝑢
𝑧𝑟 +𝑤𝑡 𝑧𝑠 +𝑤𝑢

]

=
[

𝑚(𝑥𝑟 + 𝑦𝑡) + 𝑛(𝑧𝑟 +𝑤𝑡) 𝑚(𝑥𝑠 + 𝑦𝑢) + 𝑛(𝑧𝑠 +𝑤𝑢)
𝑝(𝑥𝑟 + 𝑦𝑡) + 𝑞(𝑧𝑟 +𝑤𝑡) 𝑝(𝑥𝑠 + 𝑦𝑢) + 𝑞(𝑧𝑠 +𝑤𝑢)

]

=
[

𝑚𝑟𝑥 + 𝑚𝑡𝑦 + 𝑛𝑟𝑧 + 𝑛𝑡𝑤 𝑚𝑠𝑥 + 𝑚𝑢𝑦 + 𝑛𝑠𝑧 + 𝑛𝑢𝑤
𝑝𝑟𝑥 + 𝑝𝑡𝑦 + 𝑞𝑟𝑧 + 𝑞𝑡𝑤 𝑝𝑠𝑥 + 𝑝𝑢𝑦 + 𝑞𝑠𝑧 + 𝑞𝑢𝑤

]

.

They are equal!
Note that this doesn’t prove it’s associative for all qualifying18 matrices because we’ve only shown it for

2 × 2 matrices.

11. Prove that matrix multiplication is distributive: 𝑃 (𝑋 + 𝑌 ) = 𝑃𝑋 + 𝑃𝑌 .

This isn’t as bad.

𝑃 (𝑋 + 𝑌 ) =
[

𝑚 𝑛
𝑝 𝑞

]([

𝑥 𝑦
𝑧 𝑤

]

+
[

𝑟 𝑠
𝑡 𝑢

])

=
[

𝑚 𝑛
𝑝 𝑞

] [

𝑥 + 𝑟 𝑦 + 𝑠
𝑧 + 𝑡 𝑤 + 𝑢

]

=
[

𝑚(𝑥 + 𝑟) + 𝑛(𝑧 + 𝑡) 𝑚(𝑦 + 𝑠) + 𝑛(𝑤 + 𝑢)
𝑝(𝑥 + 𝑟) + 𝑛(𝑧 + 𝑡) 𝑝(𝑦 + 𝑠) + 𝑞(𝑤 + 𝑢)

]

=
[

(𝑚𝑥 + 𝑛𝑧) + (𝑚𝑟 + 𝑛𝑡) (𝑚𝑦 + 𝑛𝑤) + (𝑚𝑠 + 𝑛𝑢)
(𝑝𝑥 + 𝑛𝑧) + (𝑝𝑟 + 𝑛𝑡) (𝑝𝑦 + 𝑞𝑤) + (𝑝𝑠 + 𝑞𝑢)

]

=
[

𝑚 𝑛
𝑝 𝑞

] [

𝑥 𝑦
𝑧 𝑤

]

+
[

𝑚 𝑛
𝑝 𝑞

] [

𝑟 𝑠
𝑡 𝑢

]

= 𝑃𝑋 + 𝑃𝑌 .

Indeed, they are equal!

12. When does 𝑃𝑋 = 𝑋𝑃? Don’t worry if you get some messy equations in your answer.

Let’s try it.

𝑃𝑋 =
[

𝑚 𝑛
𝑝 𝑞

] [

𝑥 𝑦
𝑧 𝑤

]

=
[

𝑚𝑥 + 𝑛𝑧 𝑚𝑦 + 𝑛𝑤
𝑝𝑥 + 𝑞𝑧 𝑝𝑦 + 𝑞𝑤

]

𝑋𝑃 =
[

𝑥 𝑦
𝑧 𝑤

] [

𝑚 𝑛
𝑝 𝑞

]

=
[

𝑥𝑚 + 𝑦𝑝 𝑥𝑛 + 𝑦𝑞
𝑧𝑚 +𝑤𝑝 𝑧𝑛 +𝑤𝑞

]

18In terms of dimension.
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Equating terms, we get

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝑚𝑥 + 𝑛𝑧 = 𝑥𝑚 + 𝑦𝑝
𝑚𝑦 + 𝑛𝑤 = 𝑥𝑛 + 𝑦𝑞
𝑝𝑥 + 𝑞𝑧 = 𝑧𝑚 +𝑤𝑝
𝑝𝑦 + 𝑞𝑤 = 𝑧𝑛 +𝑤𝑞

⟹

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝑛𝑧 = 𝑦𝑝
𝑚𝑦 + 𝑛𝑤 = 𝑥𝑛 + 𝑦𝑞
𝑝𝑥 + 𝑞𝑧 = 𝑧𝑚 +𝑤𝑝
𝑝𝑦 = 𝑧𝑛

.

13. Cook’s Seafood Restaurant in Menlo Park sells fish and chips. The Captain’s order is two pieces
of fish and one order of chips, while the Regular order is one piece of fish and one order of
chips.

(a) Write a matrix representing these facts, with clear labels on your rows and columns.

Let Captain = 𝐶 and Regular = 𝑅. Then the matrix is:

𝑀 =

fish chips
[ ]

𝐶 2 1
𝑅 1 1

.

I’m writing it this way rather than the transpose so that the order of the matrices in the next problem is
the same as the problems appear. Otherwise, you’d have to flip the order of multiplication (remember, it’s not
commutative!).

(b) The restaurant management estimates their cost at 0.75 for each piece of fish and 0.50 for
each order of chips. Represent this as a matrix, then use matrix multiplication to calculate
the cost of the two possible orders.

𝑁 =

cost ($)
[ ]

fish 0.75
chips 0.50

.

Now we just multiply the matrices:

𝑀𝑁 =

fish chips
[ ]

𝐶 2 1
𝑅 1 1

cost ($)
[ ]

fish 0.75
chips 0.50

=

cost ($)
[ ]

𝐶 2
𝑅 1.25

.

Thus, the cost of a Captain’s order is $2 and the cost of a Regular order is $1.25 (for the restaurant).

(c) For a party, Cook’s provides 10 Captain’s orders and 5 Regular orders. Write this as a
matrix and use matrix multiplication to find how many pieces of fish and orders of chips
are provided.

We want to multiply this matrix by 𝑀 and get a 2 × 1 or 1 × 2 matrix of fish and chips. Thus, we choose
the 1 × 2 matrix
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𝑃 =
𝐶 𝑅

[ ]

10 5 ,

so that the product is simply

𝑃𝑀 =
𝐶 𝑅

[ ]

10 5

fish chips
[ ]

𝐶 2 1
𝑅 1 1

=
fish chips
[ ]

25 15 .

Thus, 25 pieces of fish and 15 orders of chips are provided.

(d) Now use matrix multiplication to find out the cost of the party.

We need to multiply 𝑃𝑀 by 𝑁 to get a 1 × 1 matrix:

𝑃𝑀𝑁 =
fish chips
[ ]

25 15

cost ($)
[ ]

fish 0.75
chips 0.50

=
[

26.25
]

.

Thus, the party costs $26.25 for the restaurant.

14. We will find coefficient matrices to be particularly useful for solving systems of linear equations.
For instance,

{

3𝑥 + 4𝑦 = 5
6𝑥 + 4𝑦 = 8

⟷

[

3 4
6 7

] [

𝑥
𝑦

]

=
[

5
8

]

.

Rewrite
⎧

⎪

⎨

⎪

⎩

2𝑥 + 3𝑦 + 4𝑧 = 5
5𝑥 − 4𝑦 + 2𝑧 = 2
𝑥 + 2𝑦 = 7

as a matrix equation in this way.

We rewrite the last equation as 𝑥 + 2𝑦 + 0𝑧 = 7 and proceed to tabulate the coefficients:

⎡

⎢

⎢

⎣

2 3 4
5 −4 2
1 2 0

⎤

⎥

⎥

⎦

⏟⏞⏞⏞⏞⏟⏞⏞⏞⏞⏟
𝑀

⎡

⎢

⎢

⎣

𝑥
𝑦
𝑧

⎤

⎥

⎥

⎦

=
⎡

⎢

⎢

⎣

5
2
7

⎤

⎥

⎥

⎦

.

15.

(a) What is the transpose of the 3 × 3 matrix 𝑀 from the previous problem?

𝑀 is shown in the previous problem above. We flip it, obtaining

𝑀𝑇 =
⎡

⎢

⎢

⎣

2 5 1
3 −4 2
4 2 0

⎤

⎥

⎥

⎦

.

(b) Use 𝑀𝑇 to rewrite the system in the previous problem.

At first, one might try flipping the order of the column matrix to say 𝑧, 𝑦, 𝑥 (from top to bottom). But this
doesn’t work.

Thinking in terms of what columns and rows mean, we can label them in the original equation from the
previous problem:
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𝑥 𝑦 𝑧
[ ]Eq. 1 2 3 4

Eq. 2 5 −4 2
Eq. 3 1 2 0

[ ]𝑥 𝑥
𝑦 𝑦
𝑧 𝑧

=

[ ]Eq. 1 5
Eq. 2 2
Eq. 3 7

.

Doing the same for 𝑀𝑇 , we get

𝑀𝑇 =

Eq. 1 Eq. 2 Eq. 3
[ ]𝑥 2 5 1

𝑦 3 −4 2
𝑧 4 2 0

.

We realize that to get a matrix containing the values of Equations 1-3, we need to left-multiply 𝑀𝑇 by a
1 × 3 matrix

[

𝑥 𝑦 𝑧
]

:

[

𝑥 𝑦 𝑧
]

⎡

⎢

⎢

⎣

2 5 1
3 −4 2
4 2 0

⎤

⎥

⎥

⎦

=
[

5 2 7
]

.

This looks quite similar to the previous problem! In symbols, if 𝐴 =
⎡

⎢

⎢

⎣

𝑥
𝑦
𝑧

⎤

⎥

⎥

⎦

and 𝐵 =
⎡

⎢

⎢

⎣

5
2
7

⎤

⎥

⎥

⎦

, we have

𝑀𝐴 = 𝐵
⏟⏞⏟⏞⏟
prev. prob.

⟷ 𝐴𝑇𝑀𝑇 = 𝐵𝑇 .

(c) What is the transpose of the transpose matrix, (𝑀𝑇 )𝑇 ?

Since we’re just reflecting over the diagonal twice, we have (𝑀𝑇 )𝑇 = 𝑀 .
This brings up an interesting fact, thinking back to the last subproblem. In general for any matrices 𝑃 ,𝑄,𝑅,

we have

𝑃𝑄 = 𝑅 ⟷ 𝑄𝑇𝑃 𝑇 = 𝑅𝑇 .

Taking the transpose of both sides of the right equation, we get

(𝑄𝑇𝑃 𝑇 )𝑇 = (𝑅𝑇 )𝑇 = 𝑅.

Equating this with the left equation, we get

𝑃𝑄 = (𝑄𝑇𝑃 𝑇 )𝑇 .

Succulent!
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9 Mapping the Plane with Matrices

𝑀
[

2 3
−1 1

]

𝑃
[

2
1

]

=

𝑃 ′
[

7
−1

]

𝑃 =
[

2
1

]

𝑃 ′ =
[

7
−1

]

Figure 1: Matrix multiplication is
a transformation.

1.

(a) Use the 2 × 2 matrix from Figure 1 to operate on the points (0, 0), (1, 0), and (0, 1). What are
their images? Graph them.

The matrix is 𝑀 =
[

2 3
−1 1

]

. We multiply this by the column vectors
[

0
0

]

,
[

1
0

]

and
[

0
1

]

to get

[

2 3
−1 1

] [

0
0

]

=
[

0
0

]

[

2 3
−1 1

] [

1
0

]

=
[

2
−1

]

[

2 3
−1 1

] [

0
1

]

=
[

3
1

]

.

Thus, the right hand sides are the images of the left hand side. I graphed the transformation in Figure 2.

𝑦

𝑥(0, 0) = 𝐴′ = 𝐴
𝐵 = (1, 0)

𝐶 = (0, 1)

𝐵′ = (2,−1)

𝐶 ′ = (3, 1)

Figure 2: The matrix operating on points (0, 0), (1, 0), and (0, 1).

(b) The preimage includes two perpendicular unit vectors, (0, 1) and (1, 0). What is the (i) ratio
of the lengths of their images and (ii) angle between the images?

The (i) ratio of the lengths of their images is

|𝐶 ′
|

|𝐵′
|

=

√

32 + 12
√

22 + (−1)2
=
√

10
5

=
√

2.

The (ii) angle between their images is a bit less straightforward, but we can compute it by summing the
angle from 𝐶 ′ to the 𝑥-axis with the (positive) angle from 𝐵′ to the 𝑥-axis:

tan−1 1
3
+
|

|

|

|

tan−1 −1
2
|

|

|

|

= 𝜋
4
= 45◦.

Oh. Well another way to find the angle is to draw the 45 − 45 − 90 triangle between 𝐴, 𝐵′ and 𝐶 ′, which
shows that ∠𝐶 ′𝐴𝐵′ = 45◦. We know it’s 45 − 45 − 90 because the side lengths are

√

5,
√

5 and
√

10 as
determined by the Pythagorean Theorem. This triangle is shown in Figure 3.
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𝑦

𝑥(0, 0) = 𝐴′ = 𝐴

𝐵′ = (2,−1)

𝐶 ′ = (3, 1)

√

5

√

5

√

10

Figure 3: A helpful 45 − 45 − 90 triangle △𝐴𝐵′𝐶 ′.

(c) You can conclude that multiplication by matrices does not, in general, preserve which two
quantities between the image and preimage?

It does not preserve the ratio of lengths or the angle between two vectors. After all, the angle was 90◦ and

is now 45◦. Also, the ratio used to be 1, but is now
√

2 (or
√

2
2 ).

2.

(a) Now, use the 2 × 2 matrix from Figure 1 to operate on each of these points: (2, 1), (1, 0),
(0,−1) and (−1,−2). Do this by consolidating all the points into one matrix, with each point
as a column vector, then performing a multiplication:

[

2 3
−1 1

] [

2 1 0 −1
1 0 −1 −2

]

=
[ ]

.

We perform the multiplication:
[

2 3
−1 1

] [

2 1 0 −1
1 0 −1 −2

]

=
[

7 2 −3 −8
−1 −1 −1 −1

]

.

(b) Graph and label the preimage and the image of each point onto the same set of axes.

The graph is shown in Figure 4.

𝑦

𝑥

𝐴
𝐵

𝐶
𝐷 𝐴′𝐵′𝐶 ′𝐷′

Figure 4: The preimage and image.

(c) The points in the preimage are discontinuous, but they belong to a particular, infinite set
of points. Write the equation of that set. (Hint: What is 𝑦 in terms of 𝑥?)

They belong to a line! More precisely, they are all on the line 𝑦 = 𝑥 − 1.

(d) Write an equation for the image of that set.

It appears the equation of the image is simply 𝑦 = −1. We can verify this by multiplying 𝑀 by
[

𝑡 + 1
𝑡

]

:
[

2 3
−1 1

] [

𝑡 + 1
𝑡

]

=
[

2(𝑡 + 1) + 3𝑡
−(𝑡 + 1) + 𝑡

]

=
[

5𝑡 + 2
−1

]

.

Indeed, the 𝑦 coordinate of the image is −1, and the 𝑥 coordinate can be any real number.

(e) What other characteristic of the preimage points also applies to the image?

The points in the preimage are equidistant, taken as consecutive pairs. This is also true of the image.
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(f) Name two things that seem to be conserved when mapping points with a matrix.

It seems (i) collinearity and (ii) equally spaced points on a line have their characteristics preserved. Note
that not all equidistant points will have this property conserved. Think back to the first problem, for example,
where the pairs of points ((0, 0), (1, 0)) and ((0, 0), (0, 1)) started off equidistant, but ended up not equidistant.
Indeed, they have to be collinear for this to be preserved.

3.

(a) Choose a different 2 × 2 matrix and a different set of three collinear, equally spaced unique
points. Perform the appropriate matrix multiplication.

I’m gonna choose the transformation matrix 𝑀 =
[

3 −2
2 3

]

, and the points
[

2 4 6
−1 0 1

]

. The multiplication

is straightforward:
[

3 −2
2 3

] [

2 4 6
−1 0 1

]

=
[

8 12 16
1 8 15

]

.

(b) Graph and label the preimage points and the image points.

The picture is shown in Figure 5.

𝑦

𝑥
𝐴

𝐵
𝐶

𝐴′

𝐵′

𝐶 ′

Figure 5: The preimage and image.

(c) Have the collinearity and equal spacing been preserved?

Indeed! The vector from (8, 1) to (12, 8) is ⟨4, 7⟩ and the vector from (12, 8) to (16, 15) is also ⟨4, 7⟩.

(d) Make a conjecture about when a matrix will preserve collinearity and when a matrix will
preserve equal spacing.

Since two random matrices have both done it, we conjecture that all matrices do so.

4. Now, we will check your conjecture.

(a) Start with a general 2× 2 matrix and three equally spaced points on a line, and multiply the
two matrices:

[

𝑎 𝑏
𝑐 𝑑

] [

𝑥 − ℎ 𝑥 𝑥 + ℎ
𝑚(𝑥 − ℎ) + 𝑘 𝑚𝑥 + 𝑘 𝑚(𝑥 + ℎ) + 𝑘

]

=
[ ]

.
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[

𝑎 𝑏
𝑐 𝑑

] [

𝑥 − ℎ 𝑥 𝑥 + ℎ
𝑚(𝑥 − ℎ) + 𝑘 𝑚𝑥 + 𝑘 𝑚(𝑥 + ℎ) + 𝑘

]

=
[

𝑎(𝑥 − ℎ) + 𝑏(𝑚(𝑥 − ℎ) + 𝑘) 𝑎𝑥 + 𝑏(𝑚𝑥 + 𝑘) 𝑎(𝑥 + ℎ) + 𝑏(𝑚(𝑥 + ℎ) + 𝑘)
𝑐(𝑥 − ℎ) + 𝑑(𝑚(𝑥 − ℎ) + 𝑘) 𝑐𝑥 + 𝑑(𝑚𝑥 + 𝑘) 𝑐(𝑥 + ℎ) + 𝑑(𝑚(𝑥 + ℎ) + 𝑘)

]

.

(b) How do you know that the second matrix indeed represents collinear and equally spaced
points?

There’s a couple of ways to rationalize this, but my favorite is to simply consider the vector between
consecutive points.

Our second matrix is
[

𝑥 − ℎ 𝑥 𝑥 + ℎ
𝑚(𝑥 − ℎ) + 𝑘 𝑚𝑥 + 𝑘 𝑚(𝑥 + ℎ) + 𝑘

]

. The vector from the first point to the second

is ⟨ℎ,𝑚ℎ⟩; similarly, the vector from the second point to the third is ⟨ℎ,𝑚ℎ⟩. This means the points are collinear,
because the vectors between each pair have the same direction, and equidistant, because each consecutive
pair has the same distance.

(c) Are there any sets of collinear points that aren’t representable by the 2 × 3 matrix?

Yes there are. We cannot represent collinear points that go directly vertically, because (informally) that
would mean ℎ = 0 and 𝑚 = ∞. More precisely, we must have ℎ = 0, but then there is no real 𝑚 such that
𝑚(𝑥 − ℎ) + 𝑘 ≠ 𝑚𝑥 + 𝑘 ≠ 𝑚(𝑥 + ℎ) + 𝑘. As an example, we cannot represent the points

[

1 1 1
−50 0 50

]

.

(d) Are the points in the image collinear? Show why or why not.

Yes they are. Again, we think about the vector between consecutive points: for the first pair it’s

𝑉1 = ⟨(𝑎𝑥 + 𝑏(𝑚𝑥 + 𝑘)) − (𝑎(𝑥 − ℎ) + 𝑏(𝑚(𝑥 − ℎ) + 𝑘)), (𝑐𝑥 + 𝑑(𝑚𝑥 + 𝑘)) − (𝑐(𝑥 − ℎ) + 𝑑(𝑚(𝑥 − ℎ) + 𝑘))⟩
= ⟨𝑎ℎ + 𝑏𝑚ℎ, 𝑐ℎ + 𝑑𝑚ℎ⟩;

for the second pair it’s

𝑉2 = ⟨(𝑎(𝑥 + ℎ) + 𝑏(𝑚(𝑥 + ℎ) + 𝑘)) − (𝑎𝑥 + 𝑏(𝑚𝑥 + 𝑘)), (𝑐(𝑥 + ℎ) + 𝑑(𝑚(𝑥 + ℎ) + 𝑘)) − (𝑐𝑥 + 𝑑(𝑚𝑥 + 𝑘))⟩
= ⟨𝑎ℎ + 𝑏𝑚ℎ, 𝑐ℎ + 𝑑𝑚ℎ⟩ = 𝑉1.

Since 𝑉2 = 𝑉1, the points are collinear (and equidistant).

(e) Can you find values for 𝑎, 𝑏, 𝑐, and 𝑑 so that the image does not lie on a unique line? (Hint:
all of the points in the image must lie on no line, or on multiple lines.)

At first this seems like it’s contradicting our conjecture, but the devil’s in the details. If all the points are
coincident—that is, they’re all equal—then there are infinitely many lines passing through it.

We set 𝑎 = 𝑏 = 𝑐 = 𝑑 = 0 so that 𝑀 =
[

0 0
0 0

]

, which maps every point to (0, 0). Then there are infinitely

many lines going through the image.

(f) Use the distance formula—or some other justification—to answer whether the points in the
image are equally spaced.

We showed that they’re equidistant two subproblems ago already, with vectors. But I’ll also show it with
the distance formula since that what the question suggests.

The distance between the first two points is

√

((𝑎𝑥 + 𝑏(𝑚𝑥 + 𝑘)) − (𝑎(𝑥 − ℎ) + 𝑏(𝑚(𝑥 − ℎ) + 𝑘)))2 + ((𝑐𝑥 + 𝑑(𝑚𝑥 + 𝑘)) − (𝑐(𝑥 − ℎ) + 𝑑(𝑚(𝑥 − ℎ) + 𝑘)))2
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=
√

(𝑎ℎ + 𝑏𝑚ℎ)2 + (𝑐ℎ + 𝑑𝑚ℎ)2.

Looks familiar.... The distance between the second points is
√

((𝑎(𝑥 + ℎ) + 𝑏(𝑚(𝑥 + ℎ) + 𝑘)) − (𝑎𝑥 + 𝑏(𝑚𝑥 + 𝑘)))2 + ((𝑐(𝑥 + ℎ) + 𝑑(𝑚(𝑥 + ℎ) + 𝑘)) − (𝑐𝑥 + 𝑑(𝑚𝑥 + 𝑘)))2

=
√

(𝑎ℎ + 𝑏𝑚ℎ)2 + (𝑐ℎ + 𝑑𝑚ℎ)2.

The distances are equal; they are equidistant.

5. There is a point which remains fixed—its image is the same as its preimage—when multiplied

by the matrix
[

2 3
4 5

]

. That is,
[

2 3
4 5

] [

𝑥
𝑦

]

=
[

𝑥
𝑦

]

.

(a) Solve the above matrix equation for 𝑥 and 𝑦 to find the point.

We multiply out the right side:
[

2 3
4 5

] [

𝑥
𝑦

]

=
[

2𝑥 + 3𝑦
4𝑥 + 5𝑦

]

.

Equating corresponding entries, we get the system of equations
{

𝑥 = 2𝑥 + 3𝑦
𝑦 = 4𝑥 + 5𝑦

.

Solving this system gives (𝑥, 𝑦) = (0, 0). How mundane....

(b) There is a point 𝑄 =
[ 𝑒
𝑓
]

that remains fixed no matter what matrix you multiply it by. Can
you guess what point that is?

Looks like the point is 𝑄 =
[

0
0

]

, given the answer to the previous subproblem.

(c) Prove your conjecture by plugging your point 𝑄 into
[

𝑎 𝑏
𝑐 𝑑

]

𝑄 = 𝑄.

We do the multiplication:
[

𝑎 𝑏
𝑐 𝑑

] [

0
0

]

=
[

0
0

]

= 𝑄.

Indeed, 𝑄 always remains fixed.

6. Begin with a triangle with vertices (5, 0), (10, 0), and (5, 10).

(a) Map the vertices with the following matrices.

i.
[

1 0
0 1

]

We multiply them:
[

1 0
0 1

] [

5 10 5
0 0 10

]

=
[

5 10 5
0 0 10

]

.

ii.
[

.6 −.8

.8 .6

]

[

.6 −.8

.8 .6

] [

5 10 5
0 0 10

]

=
[

3 6 −5
4 8 10

]

.

iii.
[

.6 .8

.8 −.6

]
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[

.6 .8

.8 −.6

] [

5 10 5
0 0 10

]

=
[

3 6 11
4 8 −2

]

.

(b) Why will the new triangle defined by these vertices be the image of the starting triangle?

We only transformed the vertices, but because matrix multiplication is a linear transformation, lines are
mapped to lines. Thus, the new triangle defined by these vertices is the image of the old triangle, in the sense
that the sides of the original are mapped onto this new triangle as well.

(c) Accurately graph the preimage, then the image for each matrix on three separate sets of
axes.

(i) is shown in Figure 6; (ii) is shown in Figure 7; (iii) is shown in Figure 8.

0

2

4

6

8

10

𝑦

0 2 4 6 8 10
𝑥

𝐴 = 𝐴′ 𝐵 = 𝐵′

𝐶 = 𝐶 ′

Figure 6: Preimage and image for (i).

0

5

10

𝑦

−5 0 5 10
𝑥

𝐴 𝐵

𝐶

𝐴′

𝐵′

𝐶 ′

Figure 7: Preimage and image for (ii).

0

5

10

𝑦

0 2 4 6 8 10
𝑥

𝐴 𝐵

𝐶

𝐴′

𝐵′

𝐶 ′

Figure 8: Preimage and image for (iii).

(d) For each, describe the transformation as fully as you can. Try to classify them on the
transformations we mentioned earlier, and quantify them if necessary (e.g. to describe the
line of reflection or angle of rotation).

(i) is the identity transformation; it does absolutely nothing. Indeed, the matrix 𝐼2 =
[

1 0
0 1

]

is called the

identity matrix of size 2.
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(ii) is a rotation about the origin by tan−1 4
3 ≈ 53.13◦. This is found by taking tan−1 𝑦

𝑥 for the point (𝑥, 𝑦) =
𝐴′ = (3, 4).

(iii) is a reflection about the line 𝑦 = 𝑥
2 . The easiest way to see this is that because the origin is fixed, the

reflection line must pass through (0, 0), so it is 𝑦 = 𝑚𝑥 for some real number 𝑚. But it also must pass through
the midpoint of 𝐴𝐴′ (and 𝐵𝐵′, 𝐶𝐶 ′), which is (4, 2). Thus, 𝑚 = 2

4 = 1
2 .

7. Soon, we will map the unit square: it has vertices (0, 0), (1, 0), (0, 1), and (1, 1). We could actually
get the entire image from the image of the unit vectors (1, 0) and (0, 1), which will be useful later.

(a) How can we obtain the image of (1, 1) from the images of (1, 0) and (0, 1)?

We can use the associative property of matrix multiplication to help us! If the image of a point 𝑃 is 𝑖𝑃 , then
we have

𝑖(1,1) = 𝑀
[

1
1

]

= 𝑀
([

1
0

]

+
[

0
1

])

= 𝑀
[

1
0

]

+𝑀
[

0
1

]

= 𝑖(1,0) + 𝑖(0,1).

In words, we sum the images of (1, 0) and (0, 1) to get the image of (1, 1). Neat!

(b) Of (0, 0)?

This is sort of a trick question. We have 𝑖(0,0) = 𝑀
[

0
0

]

=
[

0
0

]

, so the image is always (0, 0).

8.

(a) Take the matrix
[ 1 2
0 1

]

and see what it does to the unit square. Please graph this, being
careful to label each point and its image. The multiplication is done for you below.

𝐴 𝐵 𝐶 𝐷
[ ] [ ]

1 2 0 1 1 0
0 1 0 0 1 1

=

𝐴′ 𝐵′ 𝐶 ′ 𝐷′
[ ]

0 1 3 2
0 0 1 1

.

𝐴 = 𝐴′ 𝐵 = 𝐵′

𝐶𝐷 𝐶 ′𝐷′

(b) What happens to the area of the image versus the preimage?

They are equal. After all, both are parallelograms with base 1 and height 1.

(c) We have 𝐴𝐵 = 𝐵𝐶 , but is 𝐴′𝐵′ equal to 𝐵′𝐶 ′? Should it?

No, 𝐴′𝐵′ ≠ 𝐵′𝐶 ′. It doesn’t have to, because though the points are equidistant, they are not collinear, and
don’t have to be equidistant in the image.

9.

(a) When is the ratio of distances between points in the image the same as in the preimage?

This is true when the image is a dilation, reflection, or rotation: or combination of the three.

(b) What is the image of the origin under any matrix mapping?

The image of (0, 0) is always (0, 0).

(c) What are the images of the points (1, 0) and (0, 1) under the mapping

[ ]

𝑎 𝑏
𝑐 𝑑 ?
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The image of (1, 0) is just (𝑎, 𝑐). The image of (0, 1) is (𝑏, 𝑑).

(d) Knowing the images of (1, 0) and (0, 1), how do we find the image of (1, 1) algebraically and
geometrically?

The image of (1, 1), as we found earlier, is the sum of the images of (1, 0) and (0, 1). Thus, it is (𝑎+𝑏, 𝑐+𝑑).
Geometrically, it forms a parallelogram with the images of (1, 0) and (0, 1).

10. How do these matrices map the plane? For each mapping, write a matrix for the images of the
four corners of the unit square, then graph the preimage and image. Describe the mapping using
words from geometry such as congruent, similar, rotate, reflect, shear, stretch, magnitude, and
direction.

(a)
[

1 0
0 −1

]

Image matrix:
[

0 1 1 0
0 0 −1 −1

]

.

𝐴 = 𝐴′ 𝐵 = 𝐵′

𝐶𝐷

𝐶 ′𝐷′

This is a reflection over the 𝑥-axis.

(b)
[

−1 0
0 −1

]

Image matrix:
[

0 −1 −1 0
0 0 −1 −1

]

.

𝐴 = 𝐴′ 𝐵

𝐶𝐷

𝐵′

𝐶 ′ 𝐷′

This is a reflection about the origin (0, 0).

(c)
[

2 0
0 2

]

Image matrix:
[

0 2 2 0
0 0 2 2

]

.
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𝐴 = 𝐴′ 𝐵

𝐶𝐷

𝐵′

𝐶 ′𝐷′

This is a dilation about the origin (0, 0) by a factor of 2.

(d)
[

0 1
−1 0

]

Image matrix:
[

0 0 1 1
0 −1 −1 0

]

.

𝐴 = 𝐴′ 𝐵 = 𝐷′

𝐶𝐷

𝐵′ 𝐶 ′

This is a rotation by 90◦ = 𝜋
2 clockwise, or 270◦ = 3𝜋

2 counterclockwise.

(e)
[

0 1
1 0

]

Image matrix:
[

0 0 1 1
0 1 1 0

]

.

𝐴 = 𝐴′ 𝐵 = 𝐷′

𝐶 = 𝐶 ′𝐷 = 𝐵′

This is a reflection about the line 𝑦 = 𝑥, which is marked in the diagram.

(f)
[

0 0
0 0

]

Image matrix:
[

0 0 0 0
0 0 0 0

]

.
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𝐴 = 𝐴′ = 𝐵′ = 𝐶 ′ = 𝐷′ 𝐵

𝐶𝐷

This is a projection onto the point (0, 0). Every point goes to (0, 0)!

(g)
[

1 0
0 1

]

Image matrix:
[

0 1 1 0
0 0 1 1

]

.

𝐴 = 𝐴′ 𝐵 = 𝐵′

𝐶 = 𝐶 ′𝐷 = 𝐷′

This is the identity transformation: it does nothing. Every point is mapped to itself.

(h)
[

3 0
0 1

]

Image matrix:
[

0 3 3 0
0 0 1 1

]

.

𝐴 = 𝐴′ 𝐵

𝐶𝐷 = 𝐷′

𝐵′

𝐶 ′

This is a stretch by a factor of 3 along the 𝑥-axis.

(i)
[

1 0
−3 1

]

Image matrix:
[

0 1 1 0
0 −3 −2 1

]

.

𝐴 = 𝐴′ 𝐵

𝐶𝐷 = 𝐷′

𝐵′

𝐶 ′

This is a shear by a factor of 3 along the negative 𝑦-axis.

(j)
[

2 2
−3 −3

]
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Image matrix:
[

0 2 4 2
0 −3 −6 −3

]

.

𝐴 = 𝐴′ 𝐵

𝐶𝐷

𝐵′ = 𝐷′

𝐶 ′

This is a mapping onto the line −3𝑥 = 2𝑦 ⟹ 3𝑥 + 2𝑦 = 0. Note that this isn’t a projection, since that has
extra constraints.

(k)
[

3 2
4 −1

]

Image matrix:
[

0 3 5 2
0 4 3 −1

]

.

𝐴 = 𝐴′ 𝐵

𝐶𝐷

𝐵′

𝐶 ′

𝐷′

This is a rather complex transformation. We’ll learn later how to tackle this properly. If you’re curious, this
matrix is the following operations in order:

• Shear by 2
3 along the (positive) 𝑥-axis

• Stretch by − 11
3 along the 𝑦-axis

• Shear by 4 along the 𝑦-axis

• Stretch by 3 along the 𝑥-axis.

(l)
⎡

⎢

⎢

⎣

√

2
2

√

2
2

√

2
2 −

√

2
2

⎤

⎥

⎥

⎦

Image matrix:
⎡

⎢

⎢

⎣

0
√

2
2

√

2
√

2
2

0
√

2
2 0 −

√

2
2

⎤

⎥

⎥

⎦

.
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𝜃 = 𝜋
8

𝐴 = 𝐴′ 𝐵

𝐶𝐷
𝐵′

𝐶 ′

𝐷′

This a reflection over the line 𝜃 = 22.5◦ = 𝜋
8 , or 𝑦 = (

√

2 − 1)𝑥.

(m)
⎡

⎢

⎢

⎣

√

2
2

√

2
2

−
√

2
2

√

2
2

⎤

⎥

⎥

⎦

Image matrix:
⎡

⎢

⎢

⎣

0
√

2
2

√

2
√

2
2

0 −
√

2
2 0

√

2
2

⎤

⎥

⎥

⎦

.

𝐴 = 𝐴′ 𝐵

𝐶𝐷

𝐵′

𝐶 ′

𝐷′

This is a rotation by 45◦ = 𝜋
4 clockwise about the origin, or a rotation of 315◦ = 7𝜋

4 counterclockwise about
the origin.

(n)
⎡

⎢

⎢

⎣

√

3
2

1
2

1
2 −

√

3
2

⎤

⎥

⎥

⎦

Image matrix:
⎡

⎢

⎢

⎣

0
√

3
2

1+
√

3
2

1
2

0 1
2

1−
√

3
2 −

√

3
2

⎤

⎥

⎥

⎦

.

𝜃 = 𝜋
12

𝐴 = 𝐴′ 𝐵

𝐶𝐷

𝐵′

𝐶 ′

𝐷′

This is a reflection about the line 𝜃 = 15◦ = 𝜋
12 , or the line 𝑦 = (2 −

√

3)𝑥.

(o)
⎡

⎢

⎢

⎣

√

3
2 − 1

2
1
2

√

3
2

⎤

⎥

⎥

⎦
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Image matrix:
⎡

⎢

⎢

⎣

0
√

3
2

√

3−1
2 − 1

2

0 1
2

1+
√

3
2

√

3
2

⎤

⎥

⎥

⎦

.

𝐴 = 𝐴′ 𝐵

𝐶𝐷

𝐵′

𝐶 ′

𝐷′

This is a rotation of 30◦ = 𝜋
6 counterclockwise about the origin.

(p)
⎡

⎢

⎢

⎣

√

3
2

1
2

− 1
2

√

3
2

⎤

⎥

⎥

⎦

Image matrix:
⎡

⎢

⎢

⎣

0
√

3
2

1+
√

3
2

1
2

0 − 1
2

√

3−1
2

√

3
2

⎤

⎥

⎥

⎦

.

𝐴 = 𝐴′ 𝐵

𝐶𝐷

𝐵′

𝐶 ′

𝐷′

This is rotation of 30◦ = 𝜋
6 clockwise about the origin, or 330◦ = 11𝜋

6 counterclockwise about the origin.

11. Carry out the following multiplications and convince yourself they are equivalent mappings of
the 𝑥 and 𝑦 coordinates.

(a)
[

𝑎 𝑏
𝑐 𝑑

] [

𝑢
𝑣

]

=
[ ]

This is simple:
[

𝑎 𝑏
𝑐 𝑑

] [

𝑢
𝑣

]

=
[

𝑎𝑢 + 𝑏𝑣
𝑐𝑢 + 𝑑𝑣

]

.

(b)
⎡

⎢

⎢

⎣

𝑎 𝑏 0
𝑐 𝑑 0
0 0 1

⎤

⎥

⎥

⎦

⎡

⎢

⎢

⎣

𝑢
𝑣
1

⎤

⎥

⎥

⎦

=
⎡

⎢

⎢

⎣

⎤

⎥

⎥

⎦

⎡

⎢

⎢

⎣

𝑎 𝑏 0
𝑐 𝑑 0
0 0 1

⎤

⎥

⎥

⎦

⎡

⎢

⎢

⎣

𝑢
𝑣
1

⎤

⎥

⎥

⎦

=
⎡

⎢

⎢

⎣

𝑎𝑢 + 𝑏𝑣 + 0 ⋅ 1
𝑐𝑢 + 𝑑𝑣 + 0 ⋅ 1
0𝑢 + 0𝑣 + 0 ⋅ 1

⎤

⎥

⎥

⎦

⎡

⎢

⎢

⎣

𝑎𝑢 + 𝑏𝑣
𝑐𝑢 + 𝑑𝑣

1

⎤

⎥

⎥

⎦

.

They are equivalent because the 𝑥, 𝑦 components of each are the same, and 𝑧 is unchanged in the second
equation.
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12.

(a) Multiply these matrices:
⎡

⎢

⎢

⎣

1 0 𝛼
0 1 𝛽
0 0 1

⎤

⎥

⎥

⎦

⎡

⎢

⎢

⎣

𝑢
𝑣
1

⎤

⎥

⎥

⎦

=
⎡

⎢

⎢

⎣

⎤

⎥

⎥

⎦

.

⎡

⎢

⎢

⎣

1 0 𝛼
0 1 𝛽
0 0 1

⎤

⎥

⎥

⎦

⎡

⎢

⎢

⎣

𝑢
𝑣
1

⎤

⎥

⎥

⎦

=
⎡

⎢

⎢

⎣

𝑢 + 𝛼
𝑣 + 𝛽
1

⎤

⎥

⎥

⎦

.

(b) Fill in the blanks: The result of the above multiplication is that the point (𝑢, 𝑣, 1) has been
translated by in the 𝑥 direction, in the 𝑦 direction, and is still anchored to the
plane 𝑧 = .

The result of the above multiplication is that the point (𝑢, 𝑣, 1) has been translated by 𝛼 in the 𝑥 direction,
𝛽 in the 𝑦 direction, and is still anchored to the plane 𝑧 =1.

13.

(a) Write a matrix which translates a point (𝑥, 𝑦, 1) 4 units in the 𝑥 direction and 7 units in the 𝑦
direction, leaving 𝑧 fixed at 1.

We have 𝛼 = 4 and 𝛽 = 7:

⎡

⎢

⎢

⎣

1 0 4
0 1 7
0 0 1

⎤

⎥

⎥

⎦

⎡

⎢

⎢

⎣

𝑥
𝑦
1

⎤

⎥

⎥

⎦

=
⎡

⎢

⎢

⎣

𝑥 + 4
𝑦 + 7
1

⎤

⎥

⎥

⎦

.

(b) Check your work by applying your matrix to the point (3, 5, 1).

The expected result is (3 + 4, 5 + 7, 1) = (7, 12, 1). We multiply:

⎡

⎢

⎢

⎣

1 0 4
0 1 7
0 0 1

⎤

⎥

⎥

⎦

⎡

⎢

⎢

⎣

3
5
1

⎤

⎥

⎥

⎦

=
⎡

⎢

⎢

⎣

7
12
1

⎤

⎥

⎥

⎦

.

Looks good.

14. Do these two multiplications. What does each represent?

(a)
⎡

⎢

⎢

⎣

𝑎 𝑏 0
𝑐 𝑑 0
0 0 1

⎤

⎥

⎥

⎦

⎡

⎢

⎢

⎣

1 0 𝛼
0 1 𝛽
0 0 1

⎤

⎥

⎥

⎦

We multiply:

⎡

⎢

⎢

⎣

𝑎 𝑏 0
𝑐 𝑑 0
0 0 1

⎤

⎥

⎥

⎦

⎡

⎢

⎢

⎣

1 0 𝛼
0 1 𝛽
0 0 1

⎤

⎥

⎥

⎦

=
⎡

⎢

⎢

⎣

𝑎 𝑏 𝑎𝛼 + 𝑏𝛽
𝑐 𝑑 𝑐𝛼 + 𝑑𝛽
0 0 1

⎤

⎥

⎥

⎦

Because we have chosen the column vector to represent points, the transformations take place from right
to left. Thus, the right matrix is the first transformation, and the left matrix is the second transformation.
Therefore, this multiplication represents a translation by ⟨𝛼, 𝛽, 0⟩, then a 2D matrix transformation by

[ 𝑎 𝑏
𝑐 𝑑

]

.

(b)
⎡

⎢

⎢

⎣

1 0 𝛼
0 1 𝛽
0 0 1

⎤

⎥

⎥

⎦

⎡

⎢

⎢

⎣

𝑎 𝑏 0
𝑐 𝑑 0
0 0 1

⎤

⎥

⎥

⎦

We multiply:

⎡

⎢

⎢

⎣

1 0 𝛼
0 1 𝛽
0 0 1

⎤

⎥

⎥

⎦

⎡

⎢

⎢

⎣

𝑎 𝑏 0
𝑐 𝑑 0
0 0 1

⎤

⎥

⎥

⎦

=
⎡

⎢

⎢

⎣

𝑎 𝑏 𝛼
𝑐 𝑑 𝛽
0 0 1

⎤

⎥

⎥

⎦

.

Well that was easy. In the same logic as the previous subproblem, this multiplication represents a 2D
matrix transformation by

[ 𝑎 𝑏
𝑐 𝑑

]

, then a translation by ⟨𝛼, 𝛽, 0⟩.
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15. What does each of these matrices represent?

(a)
⎡

⎢

⎢

⎣

𝑎 𝑏 𝛼
𝑐 𝑑 𝛽
0 0 1

⎤

⎥

⎥

⎦

This is the result to Problem 14b, so it’s a 2D matrix transformation by
[ 𝑎 𝑏
𝑐 𝑑

]

, then a translation by ⟨𝛼, 𝛽, 0⟩.

(b)
⎡

⎢

⎢

⎣

cos 𝜃 − sin 𝜃 𝛼
sin 𝜃 cos 𝜃 𝛽
0 0 1

⎤

⎥

⎥

⎦

We recognize the 2D matrix transformation here as a rotation by 𝜃 radians counterclockwise. Thus, this is
a rotation by 𝜃 radians counterclockwise, followed by a translation by ⟨𝛼, 𝛽, 0⟩.

16.

(a) Rewrite your translation matrix and your preimage vector from Problem a so that you do
not restrict your translations to the plane 𝑧 = 1, but can translate in the 𝑥, 𝑦, and 𝑧 direc-
tions. (Hint: think four dimensions!)

We do as the problem hints, and construct a 4×4 matrix which translates by ⟨𝛼, 𝛽, 𝛾, 0⟩ in four dimensions.

⎡

⎢

⎢

⎢

⎣

1 0 0 𝛼
0 1 0 𝛽
0 0 1 𝛾
0 0 0 1

⎤

⎥

⎥

⎥

⎦

⎡

⎢

⎢

⎢

⎣

𝑥
𝑦
𝑧
1

⎤

⎥

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎣

𝑥 + 𝛼
𝑦 + 𝛽
𝑧 + 𝛾
1

⎤

⎥

⎥

⎥

⎦

.

(b) Write a matrix product that translates the point (2, 3,−5) by the vector (4,−1, 2).

We have (𝑥, 𝑦, 𝑧) = (2, 3,−5) and (𝛼, 𝛽, 𝛾) = (4,−1, 2):

⎡

⎢

⎢

⎢

⎣

1 0 0 4
0 1 0 −1
0 0 1 2
0 0 0 1

⎤

⎥

⎥

⎥

⎦

⎡

⎢

⎢

⎢

⎣

2
3
−5
1

⎤

⎥

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎣

6
2
−3
1

⎤

⎥

⎥

⎥

⎦

.
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10 Rotations of the Plane

1.

(a) Which matrix changes nothing, so that the image is the same as the preimage?

We already found this; this is the identity matrix 𝐼 . The 2 × 2 identity matrix is
[

1 0
0 1

]

.

(b) Which complex number changes nothing?

1, since 1 ⋅ 𝑥 = 𝑥 ⋅ 1 = 𝑥. Although it might not seem complex at first sight, real numbers are complex too.

2.

(a) Which matrix doubles the length of every vector but leaves angles unchanged?

This is scaling up by a factor of 2 in all directions, which is
[

2 0
0 2

]

.

(b) Which complex number corresponds to the same transformation?

This is just 2, since multiplying 2 produces the desired effect of scaling.

3. Based on your answers to the previous problems, which matrix corresponds to the real number
𝑟? Let’s call this M(𝑟) for short.

It looks like

M(𝑟) =
[

𝑟 0
0 𝑟

]

.

4. Explain why M(𝑢) + M(𝑣) = M(𝑢 + 𝑣).

From the perspective of complex numbers, the relationship (𝑢)+(𝑣) = 𝑢+𝑣 holds. It also holds for matrices:

M(𝑢) + M(𝑣) =
[

𝑢 0
0 𝑢

]

+
[

𝑣 0
0 𝑣

]

=
[

𝑢 + 𝑣 0
0 𝑢 + 𝑣

]

= M(𝑢 + 𝑣).

5. Under a 90◦ counterclockwise rotation, what is the image of (a) (1, 0) and (b) (0, 1)?

The image of (1, 0) is (0, 1), and the image of (0, 1) is (−1, 0). You can verify this by drawing it out if you
want.

6.

(a) Which matrix corresponds to a 90◦ rotation?

This is just the rotation matrix
[ cos 𝜃 − sin 𝜃
sin 𝜃 cos 𝜃

]

, with 𝜃 = 90◦ = 𝜋
2 :

[

0 −1
1 0

]

.

(b) Which complex number corresponds to the same rotation?

Multiplying by 𝑖 produces the same rotation.

7. Based on your answers to Problems 1 to 6, what matrix corresponds to the complex number
𝑥 + 𝑦𝑖? Let’s extend our function M and call this M(𝑥 + 𝑦𝑖) for short.
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It looks like

M(𝑥 + 𝑦𝑖) =
[

𝑥 −𝑦
𝑦 𝑥

]

.

8. Check that M(𝑎+𝑏𝑖)+M(𝑐+𝑑𝑖) = M((𝑎+𝑏𝑖)+(𝑐+𝑑𝑖)). That is, prove that M has the same addition
rules as complex numbers.

We have

M(𝑎+𝑏𝑖)+M(𝑐+𝑑𝑖) =
[

𝑎 −𝑏
𝑏 𝑎

]

+
[

𝑐 −𝑑
𝑑 𝑐

]

=
[

𝑎 + 𝑐 −𝑏 − 𝑑
𝑏 + 𝑑 𝑎 + 𝑐

]

= M((𝑎+𝑐)+(𝑏+𝑑)𝑖) = M((𝑎+𝑏𝑖)+(𝑐+𝑑𝑖)).

9. Check that M(𝑎+𝑏𝑖)M(𝑐+𝑑𝑖) = M((𝑎+𝑏𝑖)(𝑐+𝑑𝑖)). That is, prove that M has the same multiplication
rules as complex numbers.

We have

M(𝑎 + 𝑏𝑖)M(𝑐 + 𝑑𝑖) =
[

𝑎 −𝑏
𝑏 𝑎

] [

𝑐 −𝑑
𝑑 𝑐

]

=
[

𝑎𝑐 − 𝑏𝑑 −𝑎𝑑 − 𝑏𝑐
𝑎𝑑 + 𝑏𝑐 𝑎𝑐 − 𝑏𝑑

]

= M((𝑎𝑐 − 𝑏𝑑) + (𝑎𝑑 + 𝑏𝑐)𝑖)
= M((𝑎 + 𝑏𝑖)(𝑐 + 𝑑𝑖)).

10. Recall that multiplying by cis 𝜃 rotates a complex number by 𝜃 radians.

(a) Find M(cis 𝜃).

Since cis 𝜃 = cos 𝜃 + 𝑖 sin 𝜃, we have

M(cis 𝜃) = M(cos 𝜃 + 𝑖 sin 𝜃) =
[

cos 𝜃 − sin 𝜃
sin 𝜃 cos 𝜃

]

.

(b) To prove that this matrix really does rotate by 𝜃:

i. Check that the image and preimage have the same length;

Let the preimage by
[

𝑥
𝑦

]

, which has length
√

𝑥2 + 𝑦2. Then the image is
[

cos 𝜃 − sin 𝜃
sin 𝜃 cos 𝜃

] [

𝑥
𝑦

]

=
[

𝑥 cos 𝜃 − 𝑦 sin 𝜃
𝑥 sin 𝜃 + 𝑦 cos 𝜃

]

,

which has length

√

(𝑥 cos 𝜃 − 𝑦 sin 𝜃)2 + (𝑥 sin 𝜃 + 𝑦 cos 𝜃)2 =
√

𝑥2 cos2 𝜃 − 2𝑥𝑦 cos 𝜃 sin 𝜃 + 𝑦2 sin2 𝜃 + 𝑥2 sin2 𝜃 + 2𝑥𝑦 cos 𝜃 sin 𝜃 + 𝑦2 cos2 𝜃

=
√

𝑥2(cos2 𝜃 + sin2 𝜃) + 𝑦2(sin2 𝜃 + cos2 𝜃)

=
√

𝑥2 + 𝑦2.

Indeed, this matches up with the length of the preimage.

ii. Check that the angle of the image with the 𝑥-axis is 𝜃 more than the preimage.

This is a bit unpleasant. The angle of the image with the 𝑥-axis is tan−1 𝑦
𝑥 ... we can make this more

pleasant by representing our preimage as
[

𝑟 cos𝜙
𝑟 sin𝜙

]

,
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which is a point 𝑟 away from the origin and making an angle of 𝜙 with the 𝑥-axis.
Then the image is

[

cos 𝜃 − sin 𝜃
sin 𝜃 cos 𝜃

] [

𝑟 cos𝜙
𝑟 sin𝜙

]

=
[

𝑟 cos𝜙 cos 𝜃 − 𝑟 sin𝜙 sin 𝜃
𝑟 sin𝜙 cos 𝜃 + 𝑟 cos𝜙 sin 𝜃

]

=
[

𝑟(cos𝜙 cos 𝜃 − sin𝜙 sin 𝜃)
𝑟(sin𝜙 cos 𝜃 + cos𝜙 sin 𝜃)

]

=
[

𝑟 cos(𝜙 + 𝜃)
𝑟 sin(𝜙 + 𝜃)

]

.

This is a point 𝑟 away from the origin and making an angle of 𝜃 + 𝜙 with the 𝑥-axis, an angle 𝜃 more than
the original 𝜙 as desired.

11.

(a) Find M(𝑟 cis 𝜃).

M(𝑟 cis 𝜃) = M(𝑟 cos 𝜃 + 𝑖𝑟 sin 𝜃) =
[

𝑟 cos 𝜃 −𝑟 sin 𝜃
𝑟 sin 𝜃 𝑟 cos 𝜃

]

.

(b) To prove that this matrix really does rotate by 𝜃 and stretch by 𝑟:

i. Check that the length of the image is 𝑟 times the length of the preimage;

Let the preimage be
[

𝑥
𝑦

]

, which has length
√

𝑥2 + 𝑦2. Then the image is
[

𝑟 cos 𝜃 −𝑟 sin 𝜃
𝑟 sin 𝜃 𝑟 cos 𝜃

] [

𝑥
𝑦

]

= 𝑟
[

cos 𝜃 − sin 𝜃
sin 𝜃 cos 𝜃

] [

𝑥
𝑦

]

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
M(cis 𝜃)⋅

[ 𝑥
𝑦
]

.

This has length 𝑟
√

𝑥2 + 𝑦2 by the previous problem, as desired.

ii. Check that the angle of the image with the 𝑥-axis is 𝜃 more than the preimage. (Hint:
You may want to use the previous problem, or the tangent addition formulas.)

Let our preimage be
[

𝜌 cos𝜙
𝜌 sin𝜙

]

,

which makes an angle of 𝜙 with the 𝑥-axis. Then the image is
[

𝑟 cos 𝜃 −𝑟 sin 𝜃
𝑟 sin 𝜃 𝑟 cos 𝜃

] [

𝜌 cos𝜙
𝜌 sin𝜙

]

= 𝑟
[

cos 𝜃 − sin 𝜃
sin 𝜃 cos 𝜃

] [

𝜌 cos𝜙
𝜌 sin𝜙

]

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
M(cis 𝜃)⋅

[ 𝜌 cos𝜙
𝜌 sin𝜙

]

,

which makes an angle of 𝜙 + 𝜃 with the 𝑥-axis via the last problem, as desired.

12.

(a) What matrix reflects over the 𝑥-axis, taking (𝑥, 𝑦) → (𝑥,−𝑦)?

This is the matrix
[

1 0
0 −1

]

, since this flips the 𝑦 coordinate.

(b) What is the complex number operation equivalent to this transformation?
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The equivalent operation is complex conjugation, denoted 𝑎 + 𝑏𝑖 = 𝑎 − 𝑏𝑖.

(c) Is there a complex number multiplication equivalent to this transformation? Justify your
answer.

There is not. Suppose there was a complex number 𝑟 cis 𝜃 which satisfied

(𝑎 + 𝑏𝑖)𝑟 cis 𝜃 = 𝑎 − 𝑏𝑖.

Then since |𝑎 + 𝑏𝑖| = |𝑎 − 𝑏𝑖|, 𝑟 = 1. So (𝑎 + 𝑏𝑖) cis 𝜃 = 𝑎 − 𝑏𝑖. But the transformation described is a
reflection, while this is a rotation! Thus, no such complex number exists.

13.

(a) What matrix reflects through the origin, taking (𝑥, 𝑦) → (−𝑥,−𝑦)?

This is the matrix
[

−1 0
0 −1

]

, since this flips both the 𝑥 and 𝑦 coordinates.

(b) What is the complex number operation equivalent to this transformation?

This is negating the complex number: 𝑓 (𝑧) = −𝑧.

(c) Is there a complex number multiplication equivalent to this transformation? Justify your
answer.

Yes there is! 𝑓 (𝑧) = −1 ⋅ 𝑧 is equivalent; we have −1 ⋅ (𝑎 + 𝑏𝑖) = −𝑎 − 𝑏𝑖 as desired.

14.

(a) Which of the 16 matrices on page 90, for Problem 10, have corresponding complex num-
bers?

i.
[

1 0
0 −1

]

No, since 1 ≠ −1, and the entries on the top left–bottom right diagonal need to be the same.

ii.
[

−1 0
0 −1

]

Yes; the complex number is −1.

iii.
[

2 0
0 2

]

Yes; the complex number is 2.

iv.
[

0 1
−1 0

]

Yes; the complex number is −𝑖.

v.
[

0 1
1 0

]

No, since 1 ≠ −(1); the entries on the bottom left–top right diagonal need to be the opposite of each other.

vi.
[

0 0
0 0

]

Yes; the complex number is 0.

vii.
[

1 0
0 1

]
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Yes; the complex number is 1.

viii.
[

3 0
0 1

]

No, since 3 ≠ 1.

ix.
[

1 0
−3 1

]

No, since −(−3) ≠ 0.

x.
[

2 2
−3 −3

]

No, since 2 ≠ −3.

xi.
[

3 2
4 −1

]

No, since 3 ≠ −1.

xii.
⎡

⎢

⎢

⎣

√

2
2

√

2
2

√

2
2 −

√

2
2

⎤

⎥

⎥

⎦

No, since
√

2
2 ≠ −

√

2
2 (comparing TR and BL corners).

xiii.
⎡

⎢

⎢

⎣

√

2
2

√

2
2

−
√

2
2

√

2
2

⎤

⎥

⎥

⎦

Yes; the complex number is
√

2
2 −

√

2
2 𝑖.

xiv.
⎡

⎢

⎢

⎣

√

3
2

1
2

1
2 −

√

3
2

⎤

⎥

⎥

⎦

No, since 1
2 ≠ − 1

2 .

xv.
⎡

⎢

⎢

⎣

√

3
2 − 1

2
1
2

√

3
2

⎤

⎥

⎥

⎦

Yes; the complex number is
√

3
2 + 1

2 𝑖.

xvi.
⎡

⎢

⎢

⎣

√

3
2

1
2

− 1
2

√

3
2

⎤

⎥

⎥

⎦

Yes; the complex number is
√

3
2 − 1

2 𝑖.

(b) How can you tell algebraically?

The matrix must be of the form
[

𝑎 −𝑏
𝑏 𝑎

]

for real (but not necessarily positive) 𝑎, 𝑏.

(c) How can you tell geometrically?

If the matrix is purely a rotation and dilation, then it has an associated complex number. Note that the zero
matrix is a dilation of 0.
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15. Make multiplication tables with the set of matrices which correspond to the elements of the
rotation group for the square (a 4 × 4 table) and the equilateral triangle (a 3 × 3 table).

Square: Define 𝑟 = M(𝑖) =
[

0 −1
1 0

]

, which is a rotation 90◦ counterclockwise. Then we have

𝑟2 =
[

−1 0
0 −1

]

; 𝑟3 =
[

0 1
−1 0

]

; 𝐼 =
[

1 0
0 1

]

.

The table is shown below.

⋅ 𝐼 𝑟 𝑟2 𝑟3
𝐼 𝐼 𝑟 𝑟2 𝑟3
𝑟 𝑟 𝑟2 𝑟3 𝐼
𝑟2 𝑟2 𝑟3 𝐼 𝑟
𝑟3 𝑟3 𝐼 𝑟 𝑟2

Equilateral triangle: Define 𝑟 = M(cis 120◦) =
⎡

⎢

⎢

⎣

− 1
2 −

√

3
2

√

3
2 − 1

2

⎤

⎥

⎥

⎦

. Then we have

𝑟2 =
⎡

⎢

⎢

⎣

− 1
2

√

3
2

−
√

3
2 − 1

2

⎤

⎥

⎥

⎦

; 𝐼 =
[

1 0
0 1

]

.

The table is shown below.

⋅ 𝐼 𝑟 𝑟2
𝐼 𝐼 𝑟 𝑟2
𝑟 𝑟 𝑟2 𝐼
𝑟2 𝑟2 𝐼 𝑟

16.

(a) Write a matrix for a rotation of 𝜃 around the origin followed by a translation by (𝑎, 𝑏).

Recall that for translations, we need 3 × 3 matrices. The matrix is

⎡

⎢

⎢

⎣

1 0 𝑎
0 1 𝑏
0 0 1

⎤

⎥

⎥

⎦

⎡

⎢

⎢

⎣

cos 𝜃 − sin 𝜃 0
sin 𝜃 cos 𝜃 0
0 0 1

⎤

⎥

⎥

⎦

=
⎡

⎢

⎢

⎣

cos 𝜃 − sin 𝜃 𝑎
sin 𝜃 cos 𝜃 𝑏
0 0 1

⎤

⎥

⎥

⎦

.

(b) Write a matrix for a translation by (𝑎, 𝑏) followed by a rotation of 𝜃 around the origin.

The matrix is:

⎡

⎢

⎢

⎣

cos 𝜃 − sin 𝜃 0
sin 𝜃 cos 𝜃 0
0 0 1

⎤

⎥

⎥

⎦

⎡

⎢

⎢

⎣

1 0 𝑎
0 1 𝑏
0 0 1

⎤

⎥

⎥

⎦

=
⎡

⎢

⎢

⎣

cos 𝜃 − sin 𝜃 𝑎 cos 𝜃 − 𝑏 sin 𝜃
sin 𝜃 cos 𝜃 𝑎 sin 𝜃 + 𝑏 cos 𝜃
0 0 1

⎤

⎥

⎥

⎦

.

17. Use matrix multiplication to find the image (𝑥′, 𝑦′) of a point (𝑥, 𝑦) rotated by 𝜃.

We represent (𝑥, 𝑦) as
[

𝑥
𝑦

]

. With matrix multiplication, we get
[

cos 𝜃 − sin 𝜃
sin 𝜃 cos 𝜃

] [

𝑥
𝑦

]

=
[

𝑥 cos 𝜃 − 𝑦 sin 𝜃
𝑥 sin 𝜃 + 𝑦 cos 𝜃

]

.

Thus, (𝑥′, 𝑦′) = (𝑥 cos 𝜃 − 𝑦 sin 𝜃, 𝑥 sin 𝜃 + 𝑦 cos 𝜃).

18.

(a) Given the parabola 𝑥 = 𝑡, 𝑦 = 𝑡2, use matrix multiplication to rotate it by 45◦.
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Let the new axes be 𝑥′ and 𝑦′. Then we have

[

𝑥′
𝑦′

]

=
⎡

⎢

⎢

⎣

√

2
2 −

√

2
2

√

2
2

√

2
2

⎤

⎥

⎥

⎦

[

𝑡
𝑡2

]

=
⎡

⎢

⎢

⎣

√

2
2 𝑡 −

√

2
2 𝑡2

√

2
2 𝑡 +

√

2
2 𝑡2

⎤

⎥

⎥

⎦

.

Thus, 𝑥′ =
√

2
2 𝑡 −

√

2
2 𝑡2 and 𝑦′ =

√

2
2 𝑡 +

√

2
2 𝑡2.

(b) Graph the new parametric equations on your calculator.

Here you go! We let 𝑥 = 𝑥′ and 𝑦 = 𝑦′ for graphing purposes, which rotates it.

0

1

2

3

4

5

6

7

8

𝑦

−7.5 −5 −2.5 0
𝑥

Figure 1: Rotated parabola.

Challenge: Find the maximum 𝑥 value of this! Requires either some ingenuity or some calculus.19

19Answer: Many non-calculus ways to do this challenge. One way is to ask what 𝑡 maximizes 𝑥(𝑡).
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11 Matrices Generate Groups

1. Analyze this group with the following elements, following the form of Example 1. What makes
this group fundamentally different from the example?

𝐼 =
[

1 0
0 1

]

, 𝐴 =
[

0 −1
1 0

]

, 𝐵 =
[

−1 0
0 −1

]

, 𝐶 =
[

0 1
−1 0

]

i. Specify the elements of the matrix group, unless they are all given.

They are all given.

ii. Describe what each matrix does to the plane.

𝐼 does nothing. 𝐴 rotates by 90◦ = 𝜋
2 counterclockwise. 𝐵 reflects over the origin, or rotates 180◦ = 𝜋

counterclockwise. 𝐶 rotates by 90◦ = 𝜋
2 clockwise, or 270◦ = 3𝜋

2 counterclockwise.

iii. Construct a group table; you can use a calculator.

Everything is a rotation by a factor of 90◦ = 𝜋
2 .

⋅ 𝐼 𝐴 𝐵 𝐶
𝐼 𝐼 𝐴 𝐵 𝐶
𝐴 𝐴 𝐵 𝐶 𝐼
𝐵 𝐵 𝐶 𝐼 𝐴
𝐶 𝐶 𝐼 𝐴 𝐵

iv. Decide which symmetry group your matrix is isomorphic to.

This is the cyclic group 𝐶4, which is (up to isomorphism) the rotation group of the square.

2. The matrix
⎡

⎢

⎢

⎣

− 1
2 −

√

3
2

√

3
2 − 1

2

⎤

⎥

⎥

⎦

generates a group of order 3. Enumerate the elements of this group

and analyze per the example.

i. Specify the elements of the matrix group, unless they are all given.

Let the given matrix be 𝑀 =
⎡

⎢

⎢

⎣

− 1
2 −

√

3
2

√

3
2 − 1

2

⎤

⎥

⎥

⎦

. Then

𝑀2 =
⎡

⎢

⎢

⎣

− 1
2

√

3
2

−
√

3
2 − 1

2

⎤

⎥

⎥

⎦

;

𝑀3 = 𝐼 =
[

1 0
0 1

]

.

ii. Describe what each matrix does to the plane.

𝑀 rotates by 120◦ = 2𝜋
3 counterclockwise. 𝑀2 rotates by 240◦ = 4𝜋

3 counterclockwise, or 120◦ = 2𝜋
3

clockwise. 𝐼 does nothing.

iii. Construct a group table; you can use a calculator.

These are all rotations by a factor of 120◦ = 2𝜋
3 .

⋅ 𝐼 𝑀 𝑀2

𝐼 𝐼 𝑀 𝑀2

𝑀 𝑀 𝑀2 𝐼
𝑀2 𝑀2 𝐼 𝑀
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iv. Decide which symmetry group your matrix is isomorphic to.

This is the cyclic group 𝐶3, which is (up to isomorphism) the rotation group of the triangle.

3. The matrices
⎡

⎢

⎢

⎣

− 1
2 −

√

3
2

√

3
2 − 1

2

⎤

⎥

⎥

⎦

and
[

1 0
0 −1

]

generate a group of order 6, of which the group in

problem 2 is a subgroup. Enumerate the elements of the group and analyze per the example.

i. Specify the elements of the matrix group, unless they are all given.

We know that the first matrix is a rotation by 120◦ = 2𝜋
3 , and the second matrix is a reflection about the

𝑥-axis, since it flips the 𝑦 coordinate. Thus, let the first matrix be 𝑟 and the second matrix be 𝑓 . Note how
understanding transformations helps us find the other matrices without much work.

The six elements are shown below.

𝑟 =
⎡

⎢

⎢

⎣

− 1
2 −

√

3
2

√

3
2 − 1

2

⎤

⎥

⎥

⎦

𝑓 =
[

1 0
0 −1

]

𝑟2 =
⎡

⎢

⎢

⎣

− 1
2

√

3
2

−
√

3
2 − 1

2

⎤

⎥

⎥

⎦

𝑓𝑟 =
⎡

⎢

⎢

⎣

− 1
2 −

√

3
2

−
√

3
2

1
2

⎤

⎥

⎥

⎦

𝑓𝑟2 =
⎡

⎢

⎢

⎣

− 1
2

√

3
2

√

3
2

1
2

⎤

⎥

⎥

⎦

𝐼 = 𝑓 2 = 𝑟3 =
[

1 0
0 1

]

ii. Describe what each matrix does to the plane.

𝑟 is a rotation by 120◦ = 2𝜋
3 counterclockwise. 𝑓 is a reflection about the 𝑥-axis. 𝑟2 is a rotation by

240◦ = 4𝜋
3 counterclockwise, or 120◦ = 2𝜋

3 clockwise. 𝑓𝑟 is a reflection about the line 𝜃 = 120◦ = 2𝜋
3 . 𝑓𝑟2 is a

reflection about the line 𝜃 = 240◦ = 4𝜋
3 . 𝐼 does nothing.

iii. Construct a group table; you can use a calculator.

Here you go.

⋅ 𝐼 𝑟 𝑟2 𝑓 𝑓𝑟 𝑓𝑟2
𝐼 𝐼 𝑟 𝑟2 𝑓 𝑓𝑟 𝑓𝑟2
𝑟 𝑟 𝑟2 𝐼 𝑓𝑟2 𝑓 𝑓𝑟
𝑟2 𝑟2 𝐼 𝑟 𝑓𝑟 𝑓𝑟2 𝑓
𝑓 𝑓 𝑓𝑟 𝑓𝑟2 𝐼 𝑟 𝑟2
𝑓𝑟 𝑓𝑟 𝑓𝑟2 𝑓 𝑟2 𝐼 𝑟
𝑓𝑟2 𝑓𝑟2 𝑓 𝑓𝑟 𝑟 𝑟2 𝐼

iv. Decide which symmetry group your matrix is isomorphic to.

This is the dihedral group of order 6 (𝐷3), or the symmetry group of the triangle (𝑆3).

v. What other sets of matrices could have generated this group?
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The sets {𝑟, 𝑓𝑟}, {𝑟, 𝑓𝑟2}, {𝑟2, 𝑓}, {𝑟2, 𝑓𝑟}, {𝑟2, 𝑓𝑟2}, {𝑓, 𝑓𝑟}, {𝑓, 𝑓𝑟2}, and {𝑓𝑟, 𝑓𝑟2}. In fact, any two
non-identity elements can together generate the group, except for {𝑟, 𝑟2}.

4. The matrix

⎡

⎢

⎢

⎢

⎣

√

5−1
4 −

√

10+2
√

5
4

√

10+2
√

5
4

√

5−1
4

⎤

⎥

⎥

⎥

⎦

generates a group of order 5. Enumerate the elements of

the group and analyze per the example; you can use a calculator.

i. Specify the elements of the matrix group, unless they are all given.

We’d expect this to be a rotation matrix of some multiple of 72◦. Thus, let’s call it 𝑟 for now. It isn’t
immediately clear, however, how to compute cos 72◦. All available sum and difference expressions seem
useless. We’ll defer this computation to part (ii). Here are the elements of the matrix group:

𝑟 =

⎡

⎢

⎢

⎢

⎣

√

5−1
4 −

√

10+2
√

5
4

√

10+2
√

5
4

√

5−1
4

⎤

⎥

⎥

⎥

⎦

𝑟2 =

⎡

⎢

⎢

⎢

⎣

− 1+
√

5
4 −

√

10−2
√

5
4

√

10−2
√

5
4 − 1+

√

5
4

⎤

⎥

⎥

⎥

⎦

𝑟3 =

⎡

⎢

⎢

⎢

⎣

− 1+
√

5
4

√

10−2
√

5
4

−
√

10−2
√

5
4 − 1+

√

5
4

⎤

⎥

⎥

⎥

⎦

𝑟4 =

⎡

⎢

⎢

⎢

⎣

√

5−1
4

√

10+2
√

5
4

−
√

10+2
√

5
4

√

5−1
4

⎤

⎥

⎥

⎥

⎦

𝐼 = 𝑟5 =
[

1 0
0 1

]

Note that there are many equivalent ways to write the entries of these matrices. For example,

−

√

10 − 2
√

5
4

= −
√

2
(

5 +
√

5
)

+
√

10
(

5 +
√

5
)

.

The latter is what WolframAlpha gives; I prefer the former form.

ii. Describe what each matrix does to the plane.

We’d guess that 𝑟 is a rotation of 360◦
5 = 72◦, but to prove this we need to find cos 72◦ and sin 72◦.

Consider cos 72◦. Because of symmetry around 2.5 ⋅ 72◦ = 180◦, we have cos(2 ⋅ 72◦) = cos(3 ⋅ 72◦). By
the double-angle and triple-angle (which we found in the complex numbers section) formulae,

cos 2𝑥 = 2 cos2 𝑥 − 1;

cos 3𝑥 = 4 cos3 𝑥 − 3 cos 𝑥.

Let 𝑐 = cos 72◦. Then we have

2𝑐2 − 1 = 4𝑐3 − 3𝑐

4𝑐3 − 2𝑐2 − 3𝑐 + 1 = 0

(4𝑐2 + 2𝑐 − 1)(𝑐 − 1) = 0,
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We know cos 72◦ ≠ cos 0◦ = 1, so

4𝑐2 + 2𝑐 − 1 = 0

𝑐 =
−1 ±

√

5
4

.

Since 0 < 72◦ < 90◦, we have 𝑐 > 0, so 𝑐 =
√

5−1
4 . To find sin 72◦ we use the Pythagorean identity and

choose the positive root:

sin 72◦ =
√

1 − 𝑐2 =

√

1 −
5 − 2

√

5 + 1
16

=

√

16 − 6 + 2
√

5
16

=

√

10 + 2
√

5
4

.

Indeed, we have

[

cos 72◦ − sin 72◦
sin 72◦ cos 72◦

]

=
[

𝑐 −𝑠
𝑠 𝑐

]

=

⎡

⎢

⎢

⎢

⎣

√

5−1
4 −

√

10+2
√

5
4

√

10+2
√

5
4

√

5−1
4

⎤

⎥

⎥

⎥

⎦

= 𝑟.

iii. Construct a group table; you can use a calculator.

Here it is:

⋅ 𝐼 𝑟 𝑟2 𝑟3 𝑟4
𝐼 𝐼 𝑟 𝑟2 𝑟3 𝑟4
𝑟 𝑟 𝑟2 𝑟3 𝑟4 𝐼
𝑟2 𝑟2 𝑟3 𝑟4 𝐼 𝑟
𝑟3 𝑟3 𝑟4 𝐼 𝑟 𝑟2
𝑟4 𝑟4 𝐼 𝑟 𝑟2 𝑟3

iv. Decide which symmetry group your matrix is isomorphic to.

This the cyclic group of order 5, or the rotation group of the regular pentagon.

v. What other sets of matrices could have generated this group?

Any matrix in this group, except the identity matrix, would generate the whole group, since 5 is a prime
number.

5. Let 𝐴 =

[

cos 2𝜋
𝑛 − sin 2𝜋

𝑛
sin 2𝜋

𝑛 cos 2𝜋
𝑛

]

, 𝐵 =

[

cos 2𝜋
𝑛 sin 2𝜋

𝑛
sin 2𝜋

𝑛 −cos 2𝜋
𝑛

]

, 𝐶 =
[

1 0
0 −1

]

, and 𝑛 be an integer.

What group is generated by the following sets of generators? Describe them geometrically.

(a) {𝐴}

𝐴 is a rotation matrix rotating by 2𝜋
𝑛 radians, which is the angle subtended by one of the sides of an 𝑛-gon:
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2𝜋
11

Figure 1: A rotation of 2𝜋
𝑛 radians is a symmetry of the 𝑛-gon. Here, 𝑛 = 11.

(b) {𝐵}

𝐵 =

[

cos 2𝜋
𝑛 sin 2𝜋

𝑛
sin 2𝜋

𝑛 −cos 2𝜋
𝑛

]

initially appears to be a rotation matrix, but the right column is negated. What

could this mean?!
Well, notice that 𝐵𝐶 = 𝐴. Since 𝐶 is just a reflection over the 𝑥-axis, 𝐶2 = 𝐼 , so we have 𝐵𝐶𝐶 = 𝐴𝐶

and thus 𝐵 = 𝐴𝐶 . In geometric terms, 𝐵 is a reflection over the 𝑥-axis, followed by a rotation of 2𝜋∕𝑛
radians counterclockwise; recall that our matrices transform right-to-left. But a non-zero rotation followed by
a reflection is just a reflection about a different axis! So {𝐵} generates the cyclic group of order 2, which is
the rotation group of the rectangle or the symmetry group of the line segment.

To confirm this, we can show that 𝐵2 = 𝐼 :

𝐵2 =

[

cos 2𝜋
𝑛 sin 2𝜋

𝑛
sin 2𝜋

𝑛 −cos 2𝜋
𝑛

][

cos 2𝜋
𝑛 sin 2𝜋

𝑛
sin 2𝜋

𝑛 −cos 2𝜋
𝑛

]

=

[

cos2 2𝜋
𝑛 + sin2 2𝜋

𝑛 cos 2𝜋
𝑛 sin 2𝜋

𝑛 − sin 2𝜋
𝑛 cos 2𝜋

𝑛
sin 2𝜋

𝑛 cos 2𝜋
𝑛 − cos 2𝜋

𝑛 sin 2𝜋
𝑛 sin2 2𝜋

𝑛 + cos2 2𝜋
𝑛

]

=
[

1 0
0 1

]

= 𝐼.

(c) {𝐴,𝐵}

Thinking of these as transformations, we see that 𝐵 is a reflection across the line 𝜃 = 𝜋∕𝑛 (not 2𝜋∕𝑛!),
which is a symmetry of the 𝑛-gon20. Combined with the rotation of 2𝜋∕𝑛, this generates the dihedral group of
order 2𝑛: the symmetry group of the 𝑛-gon.

(d) {𝐵,𝐶}

Since 𝐴 = 𝐵𝐶 and 𝐴𝑛−1𝐵 = 𝐶 , this problem’s set can generate 𝐴 and the previous problem’s set can
generate 𝐶 . Thus, they are the same; {𝐵,𝐶} generates the dihedral group of order 2𝑛: the symmetry group
of the 𝑛-gon.

6. Given 𝐶 =
[

1 0
0 −1

]

and 𝐷 =
[

1 1
0 −1

]

, what is the order of the group generated by the

following sets of generators?

(a) {𝐶}

This has order 2, since 𝐶 is just a reflection over the 𝑥-axis. In algebraic terms, 𝐶2 = 𝐼 .

(b) {𝐷}

Interestingly, 𝐷2 = 𝐼 , so this again has order 2. Truly succulent!

(c) {𝐶,𝐷}

20To be pedantic, the 𝑛-gon centered on the origin and with a vertex on the 𝑥-axis.
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What new do we get from a set of two matrices? Well, consider 𝐶𝐷 = 𝐽 (how fun) and 𝐷𝐶 = 𝐾 (less fun)

which are just 𝐽 =
[

1 1
0 1

]

and 𝐾 =
[

1 −1
0 1

]

, respectively. Let’s analyze products of 𝐽 and 𝐾 .

Well, 𝐽𝐾 = 𝐾𝐽 = 𝐼 . More interesting stuff happens when we multiply them repeatedly.

𝐽 2 =
[

1 2
0 1

]

𝐽 3 =
[

1 3
0 1

]

𝐾2 =
[

1 −2
0 1

]

𝐾3 =
[

1 −3
0 1

]

𝐽 3𝐾2 =
[

1 1
0 1

]

= 𝐽

𝐾3𝐽 2 =
[

1 −1
0 1

]

= 𝐾.

Interesting! It seems a product of 𝐽 ’s and 𝐾 ’s leads to a matrix of the form
[

1 𝑛
0 1

]

, where 𝑛 is an integer.

We can also multiply this by 𝐶 , which gives us the matrices
[

1 𝑚
0 −1

]

, where 𝑚 is an integer. The order of

this group is countably infinite, since we can enumerate all of the elements in a list.

7. What matrix could generate a group isomorphic to the cyclic group of order 𝑛, 𝐶𝑛?

The matrix

[

cos 2𝜋
𝑛 − sin 2𝜋

𝑛
sin 2𝜋

𝑛 cos 2𝜋
𝑛

]

could do so.

8. What set of two matrices could generate a group isomorphic to the dihedral group of order 2𝑛,
𝐷𝑛?

There are a variety of choices, but at least two matrices are needed because the dihedral group is not
cyclic. We could choose one rotation and one reflection, or two reflections; remember that the composition
of two reflections is itself a rotation. One example is a rotation of 2𝜋∕𝑛 radians and a reflection by any axis.
Notice how one rotation gives all possible rotations of a regular 𝑛-gon, and the reflection brings us into the
"mirror world" from which the rotation carries us to dihedral victory.

Not all sets of rotations and reflections work, though. Challenge: What criteria are needed for a set of
matrices to generate the group?

9. The adjacency matrices for the 3-post snap group map to a subgroup of the full cube symmetry
group. What rotations/reflections do they map to?

We take the matrices directly as transformations of a cube centered at the origin, and note that they map
the three basis vectors (1, 0, 0), (0, 1, 0), and (0, 0, 1) to each other in some order. These vectors describe three
faces of the cube sharing a common vertex, namely (1, 1, 1), so the matrices are any of the six operations
that exchange these faces. These are the identity, a 120◦ and a 240◦ rotation about the axis (1, 1, 1), and a
reflection about any of three planes passing through the origin and one of the shared edges.

A natural question is how many distinct subgroups 𝐷3 lie within 𝑆4. Geometrically, we see that we can
also take other sets of matrices; any three faces sharing a vertex will do, which gives at least 8, but there
are others. We need three-fold symmetry somehow, which you’re only going to get from rotating about a
vertex-to-vertex axis, and then some matrix that behaves nicely with the rotation.

10. Given 𝑃 =
⎡

⎢

⎢

⎣

0 −1 0
1 0 0
0 0 1

⎤

⎥

⎥

⎦

, 𝑄 =
⎡

⎢

⎢

⎣

0 1 0
0 0 1
1 0 0

⎤

⎥

⎥

⎦

, and 𝑅 =
⎡

⎢

⎢

⎣

−1 0 0
0 1 0
0 0 1

⎤

⎥

⎥

⎦

, try understanding the groups

generated by:
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Fair warning: these problems are challenging. With more advanced tools of abstract algebra, however,
they are much easier. Nonetheless, I will present “elementary” solutions.

(a) {𝑃 }

We have 𝑃 2 =
⎡

⎢

⎢

⎣

−1 0 0
0 −1 0
0 0 1

⎤

⎥

⎥

⎦

, 𝑃 3 =
⎡

⎢

⎢

⎣

0 1 0
−1 0 0
0 0 1

⎤

⎥

⎥

⎦

, 𝑃 4 =
⎡

⎢

⎢

⎣

1 0 0
0 1 0
0 0 1

⎤

⎥

⎥

⎦

= 𝐼 . Thus, {𝑃 } generates the

cyclic group of order 4 (𝐶4): the rotation group of the square.

(b) {𝑄}

We have 𝑄2 =
⎡

⎢

⎢

⎣

0 0 1
1 0 0
0 1 0

⎤

⎥

⎥

⎦

and 𝑄3 =
⎡

⎢

⎢

⎣

1 0 0
0 1 0
0 0 1

⎤

⎥

⎥

⎦

= 𝐼 . Thus, {𝑄} generates the cyclic group of order 3

(𝐶3): the rotation group of the equilateral triangle.

(c) {𝑅}

Since 𝑅2 = 𝐼 , 𝑅 generates the cyclic group of order 2 (𝐶2): the rotation group of the rectangle.

(d) {𝑃 ,𝑄}

This is where the complexity begins.
Approach 1: Purely in Matrices
This way is kind of silly, so I would suggest you read Approach 2.
To wrap our heads around this group, we consider what left-multiplying by 𝑃 and 𝑄 does to a matrix’s

entries. Multiplying 𝑃 by some matrix 𝑀 , we get

⎡

⎢

⎢

⎣

0 −1 0
1 0 0
0 0 1

⎤

⎥

⎥

⎦

⎡

⎢

⎢

⎣

𝑎 𝑏 𝑐
𝑑 𝑒 𝑓
𝑔 ℎ 𝑖

⎤

⎥

⎥

⎦

=
⎡

⎢

⎢

⎣

−𝑑 −𝑒 −𝑓
𝑎 𝑏 𝑐
𝑔 ℎ 𝑖

⎤

⎥

⎥

⎦

.

Thus, 𝑃 swaps the top two rows and negates the topmost row, in that order. Multiplying 𝑄 by 𝑀 , we get

⎡

⎢

⎢

⎣

0 1 0
0 0 1
1 0 0

⎤

⎥

⎥

⎦

⎡

⎢

⎢

⎣

𝑎 𝑏 𝑐
𝑑 𝑒 𝑓
𝑔 ℎ 𝑖

⎤

⎥

⎥

⎦

=
⎡

⎢

⎢

⎣

𝑑 𝑒 𝑓
𝑔 ℎ 𝑖
𝑎 𝑏 𝑐

⎤

⎥

⎥

⎦

.

Thus, 𝑄 cycles the rows “upward,” where row 1 goes to row 3, row 2 goes to row 1, and row 3 goes to row
2. So 𝑃 and 𝑄 are just operations on rows; columns don’t matter.

Consider the sequence of multiplications

𝑃𝑄𝑄𝑄𝑃𝑄𝑃 ⋯𝑃𝑃𝑃
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

some sequence

𝑄3 = 𝑃𝑄𝑄𝑄𝑃𝑄𝑃 ⋯𝑃𝑃𝑃
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

some sequence

𝐼.

On one hand, every matrix that can be generated by 𝑃 and 𝑄 can be written in this form. On the other
hand, we can treat the sequence of 𝑃 and 𝑄 as (left-to-right) sequential row operations on the identity matrix
𝐼 .

Think of the identity matrix as the ordered triple (𝑅1, 𝑅2, 𝑅3), where 𝑅𝑖 is row vector 𝑖. Then 𝑃 is the
function 𝑓 (𝑟1, 𝑟2, 𝑟3) = (−𝑟2, 𝑟1, 𝑟3) and 𝑄 is the function 𝑓 (𝑟1, 𝑟2, 𝑟3) = (𝑟2, 𝑟3, 𝑟1).

The order of this group is clearly finite; a quick upper bound is the number of permutations of (𝑅1, 𝑅2, 𝑅3),
along with any combination of negations of elements. This is

3! ⋅ 23 = 48.

We can reduce this upper bound by constructing an invariant: something that neither of these operations
change. This invariant is rather simple:

𝐾 =

{

1 cyclic order preserved
0 cyclic order not preserved

+

{

−1 even number of negated rows
0 odd number of negated rows

.
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“Cyclic order” is what I’m calling the property that you can start at 𝑅1 and continue reading right, looping
back if necessary, to read 𝑅1, 𝑅2, 𝑅3. Cyclic order is not preserved if you read 𝑅1, 𝑅3, 𝑅2.

The invariant for the identity is 𝐾 = 0. For all attainable row triples, the invariant is 𝐾 = 0. That’s because
𝑄 just cycles the elements, changing nothing about the invariant, while 𝑃 changes the parity of negated rows
and either restores or removes “cyclic order.” This will produce canceling effects in the two terms of 𝐾 .21

Half of row triples have 𝐾 = 0. A simple way to see this is that cyclic orderedness and negation of rows
can be chosen independently (among all possible triples), and since there are two possibilities for each, there
is a 1∕4 chance of any particular state. Since 2 states are zero, we have 2∕4 = 1∕2 of row triples that have
𝐾 = 0 and can be attained. That’s 1∕2 ⋅ 48 = 24 total row triples for a new upper bound.

Let’s see if we can construct all 24 of these triples using 𝑃 and 𝑄. There are two cases: cyclic order
preserved and even number of negated rows, and non-cyclic order preserved and odd number of negated
rows.

If we can construct ±𝑅1,±𝑅2,±𝑅3 (where the number of -s is even, totaling 4 cases) and ±𝑅1,±𝑅3,±𝑅2
(where the number of -s is odd, totaling 4 cases), then applying 𝑄 iteratively will give us all (4 + 4) ⋅ 3 = 24
possible cases. Let’s see if this is possible.

Case 1: ±𝑅1,±𝑅2,±𝑅3, even number of negations.
Subcase a: 0 negations. This is just the identity, or 𝑄3. Subcase b: 2 negations.
Ssubcase i: −𝑅1,−𝑅2, 𝑅3. We can get this by applying 𝑃 twice: this is just 𝑃 2. Ssubcase ii: −𝑅1, 𝑅2,−𝑅3.

We cycle the elements until 𝑅3 and 𝑅1 are first, then apply 𝑃 2, then cycle back to the original order. In this
case, it is 𝑄𝑃 2𝑄2:

(𝑅1, 𝑅2, 𝑅3) →𝑄2
(𝑅3, 𝑅1, 𝑅2) →𝑃 2

(−𝑅3,−𝑅1, 𝑅2) →𝑄 (−𝑅1, 𝑅2,−𝑅3).

Ssubcase iii: 𝑅1,−𝑅2,−𝑅3. We apply the same concept as ssubcase ii. In this case, it is 𝑄2𝑃 2𝑄.

(𝑅1, 𝑅2, 𝑅3) →𝑄 (𝑅2, 𝑅3, 𝑅1) →𝑃 2
(−𝑅2,−𝑅3, 𝑅1) →𝑄2

(𝑅1,−𝑅2,−𝑅3).

Case 2: ±𝑅1,±𝑅3,±𝑅2, odd number of negations.
Subcase a: 1 negation. Ssubcase i: −𝑅1, 𝑅3, 𝑅2. We cycle to 𝑅3, 𝑅1, 𝑅2, then apply 𝑃 . This is just 𝑃𝑄2.

Ssubcase ii: 𝑅1,−𝑅3, 𝑅2. We cycle to 𝑅2, 𝑅3, 𝑅1, then apply 𝑃 , then cycle to 𝑅1,−𝑅3, 𝑅2. This is just 𝑄2𝑃𝑄.
Ssubcase iii: 𝑅1, 𝑅3,−𝑅2. We apply 𝑃 , then cycle to 𝑅1, 𝑅3,−𝑅2. This is just 𝑄𝑃 .

Subcase b: 3 negations. We can get this by taking ssubcase iii, then left-multiplying by 𝑃 2, which negates
the first two rows. This is just 𝑃 2𝑄𝑃 .

In matrix and row form, these results are summarized like so:

𝐼 = 𝑄3 =
⎡

⎢

⎢

⎣

1 0 0
0 1 0
0 0 1

⎤

⎥

⎥

⎦

↔ (𝑅1, 𝑅2, 𝑅3)

𝑃 2 =
⎡

⎢

⎢

⎣

−1 0 0
0 −1 0
0 0 1

⎤

⎥

⎥

⎦

↔ (−𝑅1,−𝑅2, 𝑅3)

𝑄𝑃 2𝑄2 =
⎡

⎢

⎢

⎣

−1 0 0
0 1 0
0 0 1

⎤

⎥

⎥

⎦

↔ (−𝑅1, 𝑅2,−𝑅3)

𝑄2𝑃 2𝑄 =
⎡

⎢

⎢

⎣

1 0 0
0 −1 0
0 0 −1

⎤

⎥

⎥

⎦

↔ (𝑅1,−𝑅2,−𝑅3)

𝑃𝑄2 =
⎡

⎢

⎢

⎣

−1 0 0
0 0 1
0 1 0

⎤

⎥

⎥

⎦

↔ (−𝑅1, 𝑅3, 𝑅2)

𝑄2𝑃𝑄 =
⎡

⎢

⎢

⎣

1 0 0
0 0 −1
0 1 0

⎤

⎥

⎥

⎦

↔ (𝑅1,−𝑅3, 𝑅2)

21Verify this yourself if you don’t believe me, I’m getting tired.
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𝑄𝑃 =
⎡

⎢

⎢

⎣

1 0 0
0 0 1
0 −1 0

⎤

⎥

⎥

⎦

↔ (𝑅1, 𝑅3,−𝑅2)

𝑃 2𝑄𝑃 =
⎡

⎢

⎢

⎣

−1 0 0
0 0 −1
0 −1 0

⎤

⎥

⎥

⎦

↔ (−𝑅1,−𝑅3,−𝑅2).

Left-multiplying each of these by 𝐼 (nothing), 𝑄, and 𝑄2 yield all 24 elements of our group. Since this is a
lower bound, and we found 24 to also be an upper bound, this group has order 24.

The underlying structure is a bit unclear still, and honestly this solution method is very tedious and prone
to error. I would’t be surprised if I made a silly error somewhere. This next approach will make it a bit clearer
though.

Approach 2: Geometric Visualization
We observe matrix 𝑃 and notice it looks rather like a rotation matrix in 2D, but taken to 3D in the manner

we discussed in Mapping the Plane with Matrices. In particular, it is a rotation counterclockwise by sin−1 1 =
90◦ = 𝜋

2 about the 𝑧-axis. (Note that rotating about the origin in 2D is rotating about the 𝑧-axis in 3D.)
What transformation is matrix 𝑄 then? Well just as we could apply a matrix to the points (1, 0) and (0, 1)

to understand its behavior in 2D, we can apply a matrix to the points (1, 0, 0), (0, 1, 0), and (0, 0, 1). This tells
us that (1, 0, 0) is mapped to (0, 0, 1), (0, 1, 0) is mapped to (1, 0, 0), and (0, 0, 1) is mapped to (1, 0, 0) (we get
this by reading off the column vectors). Drawing out this motion makes it clear that it is a rotation, as shown
in Figure 11.

Figure 2: 𝑄 is a rotation about an interesting axis 𝑙, the one going between (0, 0, 0) and (1, 1, 1).

Let’s try to find an object which has these two rotations as symmetries. An obvious one is the cube,
centered at (0, 0, 0). Arbitrarily, let’s let the vertices be (±1,±1,±1). Then these two matrix rotations look like
so:

Figure 3: Rotation 𝐼 . Figure 4: Rotation 𝑃 . Figure 5: 𝑄.
So since both generators are valid rotations of the cube, we at least know that this group is a subgroup

of the rotation group of the cube, which we previously found to be 𝑆4, the permutation group on 4 elements.
To figure out which subgroup, we recall the methodology we used to prove that the rotation group of the cube
was isomorphic to 𝑆4. We labeled opposite vertices with the same number, going 1 through 4. Then each
valid rotation of the cube corresponds with a permutation of (1, 2, 3, 4) on a chosen face. In this case, we will
use the top face, and consider the vertices counterclockwise starting from the corner facing the camera.
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We find which permutations 𝑃 and 𝑄 correspond to:

Figure 6: 𝐼 ↔ (1, 2, 3, 4), accord-
ing to the top face.

Figure 7: 𝑃 ↔ (4, 1, 2, 3). Figure 8: 𝑄 ↔ (1, 4, 2, 3).

So 𝑃 is a cyclic permutation of all four elements (which makes sense, since the top face is just rotating
90◦), and 𝑄 is a cyclic permutation of the last three elements. This makes sense; 𝑃 has period 4 and 𝑄 has
period 3. What permutations can we generate with these two operations though?

We show that we can swap any two adjacent elements. If this is possible, then any permutation can
definitely be reached.

First, we show we can swap the first two elements. This is done by the sequence 𝑃 3𝑄2:

(1, 2, 3, 4) →𝑄2
(1, 3, 4, 2) →𝑃 3

(2, 1, 3, 4).

Then, to swap elements in positions 𝑖 and 𝑖 + 1, where 1 ≤ 𝑖 ≤ 3, we 1. cycle the elements so that the
elements once in positions 𝑖 and 𝑖 + 1 are now in positions 1 and 2; 2. perform the aforementioned swap; 3.
cycle the elements back to their original positions.

For example, suppose we want to swap the second and third elements in (1, 2, 3, 4). Then we start with
𝑃 3, which makes the sequence (2, 3, 4, 1). Continuing with the swap, 𝑃 3𝑄2, takes us to (3, 2, 4, 1). Then 𝑃
takes us to (1, 3, 2, 4). Overall, this transformation is 𝑃𝑃 3𝑄2𝑃 3, which actually simplifies to 𝑄2𝑃 3.

A bit more formally, the swap between positions 𝑖 and 𝑖 + 1 is

𝑃 𝑖−1𝑃 3𝑄2𝑃 5−𝑖.

(Note that 𝑃 0 = 𝐼 .) In our example, 𝑖 = 2.
So we can swap any two elements. This means we can get any permutation22.
So {𝑃 ,𝑄} generates the rotation group of the cube, which is the permutation group on 4 elements 𝑆4.

(e) {𝑃 ,𝑅}

This isn’t too hard to do with matrices, but a geometric way is more fun. Observe the matrices’ resem-
blance to 2D transformation matrices (we’ve already observed this for 𝑃 ):

𝑃 =
⎡

⎢

⎢

⎣

0 −1 0
1 0 0
0 0 1

⎤

⎥

⎥

⎦

; 𝑅 =
⎡

⎢

⎢

⎣

−1 0 0
0 1 0
0 0 1

⎤

⎥

⎥

⎦

.

𝑃 is thus a rotation counterclockwise by 90◦, and 𝑅 is a reflection over the 𝑦-axis, since the 𝑥 coordinate
is being negated. This makes clear that it is the dihedral group of the square, 𝐷4, which has order 8.

(f) {𝑄,𝑅}

This is a bit trickier, because 𝑄 is not reducible to some plain 2D transformation matrix. Luckily, left-
multiplying by 𝑅 is a row operation, so we recall the idea of naming the rows of the identity matrix 𝑅1, 𝑅2, and
𝑅3:

[ ]𝑅1 1 0 0
𝑅2 0 1 0
𝑅3 0 0 1

.

We represent 𝐼 as the ordered triple (𝑅1, 𝑅2, 𝑅3). Then left-multiplying by 𝑄 is the function 𝑓 (𝑟1, 𝑟2, 𝑟3) =
(𝑟3, 𝑟1, 𝑟2), and left-multiplying by 𝑅 is the function 𝑓 (𝑟1, 𝑟2, 𝑟3) = (−𝑟1, 𝑟2, 𝑟3).

22This is intuitive but we haven’t actually proved it. Perhaps I’ll add the proof later? Nah.
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It’s pretty clear what’s going on now. Since we can cycle the rows as we please, and negate any one of
them, we have 3 orders23 and 23 possible negation patterns, we have 3 ⋅ 23 = 24 total elements.

But what is the structure of this group? Is it again, the rotation group of the cube? Let’s keep in mind the
fact that this group has order 24 and enter the geometric realm.

We know that 𝑅 is a reflection of the 𝑥-coordinate, and thus through the 𝑥𝑦-plane. 𝑄 and 𝑅 are indeed
symmetries of the cube, but since the full symmetry group of the cube (including reflections) has 48 elements,
we need something a bit more restrictive.

This is a leap in logic, but bear with me for a moment. Have you ever looked carefully at a standard
volleyball, like the one in Figure 9? It has six sides, but the sides have extra features on them: the seams,
which are directional.

Figure 9: A standard volleyball, with its in-
teresting striations.

Figure 10: This rotation of 90◦ is a symme-
try of the cube, but not of the volleyball.

This is similar to a cube, in that it has six sides, but it has fewer symmetries. For example, we can’t rotate
it 90◦ about an axis going straight through two opposite faces, since then the seams would not line up. This is
shown in Figure 10.

The motivation for analyzing this shape is that it does accept the matrices 𝑅 and 𝑄 as symmetries. 𝑅, or
flipping the volleyball over a midplane between two opposite sides, is a symmetry, as shown in Figure 11. 𝑄,
or rotating the volleyball 120◦ around a vertex-vertex axis, is also a symmetry, as shown in Figure 12.

23Not 6 orders, since the “cyclic order” is preserved. That is, something like (𝑅1, 𝑅3, 𝑅2) is not achievable.
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Figure 11: 𝑅, a reflection through the 𝑦𝑧-
plane, is a symmetry of the volleyball.

Figure 12: 𝑄, a 120◦ rotation around the
axis 𝑙, is a symmetry of the volleyball.

Indeed, since there are two possible directions for each set of seams, it seems like this should have half
the symmetries of the cube. To make this concrete, we observe that there are six faces. Each face can be
oriented to face the top, and there are two choices—not four—for its orientation, since it only has bilateral
symmetry and not four-fold symmetry like a square. This gives 6 ⋅ 2 choices. But we can also mirror the
volleyball into the “mirror world,” which multiplies the number of choices by 2. Thus, there are 6 ⋅ 2 ⋅ 2 = 24
symmetries of the volleyball.

We know that 𝑄 and 𝑅 are symmetries of the volleyball, and, via our matrix logic, generate a group of
order 24. But if they generated a group other than the symmetry group of the volleyball—let’s call it 𝑉 for
short—then 𝑉 isn’t closed, since some elements 𝑄,𝑅 ∈ 𝑉 generate a different group of the same order.

So {𝑄,𝑅} generates the symmetries of a volleyball! I think this is wonderful. For the curious, this is known
as pyritohedral symmetry. Spicy. As an abstract group, this is 𝐴4 × 𝐶2, where 𝐴4 is the alternating group on
4 elements.

(g) {𝑃 ,𝑄,𝑅}.

While this may look terrifying at first, we can reuse lots of information from the previous problems. We know
that 𝑃 ,𝑄,𝑅 are all symmetries of the cube (including reflections). Thus, {𝑃 ,𝑄,𝑅} generates a subgroup of
the symmetry group of the cube, which we previously found has order 48 (and abstract structure 𝑆4 × 𝐶2)

We also know that {𝑃 ,𝑄} generates the rotational group of the cube, which has order 24. Thus, since
𝑅 is a plain old reflection, it takes every element of the rotational group to the “mirror world,” for a total of
24 ⋅ 2 = 48 elements. The only subgroup with order 48 of a group of order 48 is the group itself. Therefore,
{𝑃 ,𝑄,𝑅} generates the full symmetry group of the cube, which has order 48.

11. The matrix
[

1 1
0 1

]

produces a shear. What is its inverse—what undoes the shear?

The matrix
[

1 −1
0 1

]

undoes the shear, since the product of these two matrices is the identity matrix.

12. The complex numbers, excluding zero, form a group under multiplication. What set of matrices
is isomorphic to the same group under multiplication?

As we found previously, the set of matrices of the form
[

𝑎 −𝑏
𝑏 𝑎

]

where 𝑎, 𝑏 ∈ ℝ under multiplication is

isomorphic, since we have the one-to-one correspondence
[

𝑎 −𝑏
𝑏 𝑎

]

↔ 𝑎 + 𝑏𝑖.
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13. Does the set of all 2 × 2 matrices form a group under multiplication? Why or why not?

No, because there is no matrix 𝑀 such that 𝑀
[

0 0
0 0

]

=
[

1 0
0 1

]

; it cannot satisfy invertibility.
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12 Composite Mappings of the Plane

1. For Problems a through e, fill in the blank.

(a) We start by finding the images of our points under the −90◦ rotation.

i. Find the matrix 𝑅 which results in a −90◦ rotation.

That’s just 𝑅 =
[

cos−90◦ − sin−90◦
sin −90◦ cos−90◦

]

=
[

0 1
−1 0

]

.

ii. Multiply 𝑅 by our unit vectors and point (𝑢, 𝑣):
[ ] [

1 0 𝑢
0 1 𝑣

]

=
[ ]

.

[

0 1
−1 0

] [

1 0 𝑢
0 1 𝑣

]

=
[

0 1 𝑣
−1 0 −𝑢

]

.

(b) Next, we reflect those intermediate image points over the line 𝑦 = 0.

i. Find the matrix 𝑆 which does this.

We want to flip the 𝑦 coordinate, so 𝑆 =
[

1 0
0 −1

]

.

ii. Multiply 𝑆 by the result of Problem ii.

[

1 0
0 −1

] [

0 1 𝑣
−1 0 −𝑢

]

=
[

0 1 𝑣
1 0 𝑢

]

.

(c) You should notice that the net result of the two transformations taken together is a reflec-
tion over the line 𝑦 = 𝑥. Which matrix represents this transformation?

The matrix that represents a reflection over 𝑦 = 𝑥 is 𝑀 =
[

0 1
1 0

]

.

(d) Notice that what we did to achieve this mapping was
[

1 0
0 −1

] [

0 1
−1 0

] [

1 0 𝑢
0 1 𝑣

]

=
[ ]

,

where we multiplied the two rightmost matrices first but didn’t use the associative property
to multiply the two leftmost matrices first. See what happens when you multiply the two
left hand matrices together:

[

1 0
0 −1

] [

0 1
−1 0

]

=
[ ]

.

Look familiar?

[

1 0
0 −1

] [

0 1
−1 0

]

=
[

0 1
1 0

]

.

This is our matrix 𝑀 from part (c)!

(e) See what happens when you reverse the order of multiplication:
[

0 1
−1 0

] [

1 0
0 −1

]

=
[ ]

[

0 1
−1 0

] [

1 0
0 −1

]

=
[

0 −1
−1 0

]

.
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(f)

i. What transformation does this new matrix result in?

This is a reflection about the line 𝑦 = −𝑥. After all, we have the mappings (1, 0) → (0,−1) and (0, 1) →
(−1, 0):

𝑦

𝑥

𝑦 = −𝑥

Figure 1: The mapping is a reflection over 𝑦 = −𝑥.

ii. How is a reflection followed by a rotation different from a rotation followed by a re-
flection? Visualize this by following what happens to a point under both sets of
transformations.

A reflection followed by a rotation and a rotation followed by a reflection are both (at least in 2D) reflections
overall. In our example, the first ordering of the matrices is the rotation followed by the reflection (recall we’re
working from right to left), and the second ordering is the reflection followed by the rotation.

In a reflection followed by a rotation clockwise (a.k.a. our rotation of −90◦), the line of reflection is moved
clockwise by half the (positive) angle of rotation. In a rotation clockwise followed by a reflection, the line of
reflection is moved counterclockwise by half the angle of rotation.

(g) Notice that we apply the transformations from right to left. If you wanted to read from left
to right, what would you have to change about the way you wrote the mapping matrices,
the vectors representing points, and the order of the matrices?

We would have to reverse the order of the matrices, write the vectors representing points as row vectors,
and transpose the matrices. For example, here is our original notation:

[

0 1
−1 0

] [

1 0
0 −1

] [

𝑎
𝑏

]

=
[

−𝑏
−𝑎

]

,

and here is it in a left to right format:

[

𝑎 𝑏
]

[

1 0
0 −1

] [

0 −1
1 0

]

=
[

−𝑏 −𝑎
]

.

(h) How does our convention for ordering transformation matrices compare...

i. ... to the convention for writing composite functions, like 𝑓 (𝑔(𝑥))?

It is similar in order to composing functions, because these both are evaluated sequentially from the right
to the left.

ii. ... to the “followed by” convention we used for “From Snaps to Flips?”

We evaluated the flip elements from right to left, so it is like our transformation matrices.

iii. ... to the “from to ” convention for transportation matrices?
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We wrote transportation matrices with the destinations between on top (as columns), and the origins on
the left side (as rows). Thus, they are evaluated from left to right, unlike our transformation matrices.

2. There are two, infinite classes of matrices which comprise all isometries of the plane which keep
the origin fixed. These are the rotation matrix and reflection matrix. Let’s look first at the rotation
matrix and make sure that it really always works the way it should.

(a) What is the result of a rotation by an angle 𝜃 followed by one of 𝜙?

It is a rotation by 𝜃 + 𝜙.

(b) Multiply their rotation matrices:
[

cos𝜙 − sin𝜙
sin𝜙 cos𝜙

] [

cos 𝜃 − sin 𝜃
sin 𝜃 cos 𝜃

]

=
[ ]

.

[

cos𝜙 − sin𝜙
sin𝜙 cos𝜙

] [

cos 𝜃 − sin 𝜃
sin 𝜃 cos 𝜃

]

=
[

cos𝜙 cos 𝜃 − sin𝜙 sin 𝜃 −cos𝜙 sin 𝜃 − sin𝜙 cos 𝜃
sin𝜙 cos 𝜃 + cos𝜙 sin 𝜃 − sin𝜙 sin 𝜃 + cos𝜙 cos 𝜃

]

.

(c) Use the angle addition formulae to simplify your answer.

[

cos𝜙 cos 𝜃 − sin𝜙 sin 𝜃 −cos𝜙 sin 𝜃 − sin𝜙 cos 𝜃
sin𝜙 cos 𝜃 + cos𝜙 sin 𝜃 − sin𝜙 sin 𝜃 + cos𝜙 cos 𝜃

]

=
[

cos(𝜙 + 𝜃) − sin(𝜙 + 𝜃)
sin(𝜙 + 𝜃) cos(𝜙 + 𝜃)

]

.

(d) Should the result be the same if you reverse the order of rotation?

Yes, since rotation is (unlike most other planar transformations) commutative.

(e) What happens to the points (1, 0), (0, 1), and (𝑥, 𝑦) when you operate on them with the
rotation matrix?

[

cos 𝜃 − sin 𝜃
sin 𝜃 cos 𝜃

] [

1 0 𝑥
0 1 𝑦

]

.

We multiply as directed:
[

cos 𝜃 − sin 𝜃
sin 𝜃 cos 𝜃

] [

1 0 𝑥
0 1 𝑦

]

=
[

cos 𝜃 − sin 𝜃 𝑥 cos 𝜃 − 𝑦 sin 𝜃
sin 𝜃 cos 𝜃 𝑥 sin 𝜃 + 𝑦 cos 𝜃

]

.

3. Now let’s check for the generalized reflection matrix.

(a) Take the matrix which results in a reflection over the line 𝑦 = 𝑥 tan 𝜃
2 and reflect over that

line twice:
[

cos 𝜃 sin 𝜃
sin 𝜃 −cos 𝜃

] [

cos 𝜃 sin 𝜃
sin 𝜃 −cos 𝜃

]

.

[

cos 𝜃 sin 𝜃
sin 𝜃 −cos 𝜃

] [

cos 𝜃 sin 𝜃
sin 𝜃 −cos 𝜃

]

=
[

cos2 𝜃 + sin2 𝜃 cos 𝜃 sin 𝜃 − cos 𝜃 sin 𝜃
sin 𝜃 cos 𝜃 − sin 𝜃 cos 𝜃 sin2 𝜃 + cos2 𝜃

]

.

(b) Simplify your answer and explain the result.

[

cos2 𝜃 + sin2 𝜃 cos 𝜃 sin 𝜃 − cos 𝜃 sin 𝜃
sin 𝜃 cos 𝜃 − sin 𝜃 cos 𝜃 sin2 𝜃 + cos2 𝜃

]

=
[

1 0
0 1

]

.

This happens because a reflection is its own inverse. How boring!

(c) Let’s do a reflection over the line 𝑦 = tan 𝜃
2 followed by a reflection over the line 𝑦 = tan 𝜙

2 :

[

cos 𝜃 sin 𝜃
sin 𝜃 −cos 𝜃

] [

cos𝜙 sin𝜙
sin𝜙 −cos𝜙

]

.

[

cos 𝜃 sin 𝜃
sin 𝜃 −cos 𝜃

] [

cos𝜙 sin𝜙
sin𝜙 −cos𝜙

]

=
[

cos 𝜃 cos𝜙 + sin 𝜃 sin𝜙 cos 𝜃 sin𝜙 − sin 𝜃 cos𝜙
sin 𝜃 cos𝜙 − cos 𝜃 sin𝜙 sin 𝜃 sin𝜙 + cos 𝜃 cos𝜙

]

.
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(d) Simplify your answer using the angle addition formulae, and interpret.

[

cos 𝜃 cos𝜙 + sin 𝜃 sin𝜙 cos 𝜃 sin𝜙 − sin 𝜃 cos𝜙
sin 𝜃 cos𝜙 − cos 𝜃 sin𝜙 sin 𝜃 sin𝜙 + cos 𝜃 cos𝜙

]

=
[

cos(𝜃 − 𝜙) sin(𝜙 − 𝜃)
sin(𝜃 − 𝜙) cos(𝜃 − 𝜙)

]

=
[

cos(𝜃 − 𝜙) − sin(𝜃 − 𝜙)
sin(𝜃 − 𝜙) cos(𝜃 − 𝜙)

]

.

This is rotation by 𝜃 − 𝜙 counterclockwise.

(e) Does it make a difference which reflection comes first? Do the matrix multiplication to
confirm your answer.

In general, reflections aren’t commutative, so it probably will make a difference.

[

cos𝜙 sin𝜙
sin𝜙 −cos𝜙

] [

cos 𝜃 sin 𝜃
sin 𝜃 −cos 𝜃

]

=
[

cos𝜙 cos 𝜃 + sin𝜙 sin 𝜃 cos𝜙 sin 𝜃 − sin𝜙 cos 𝜃
sin𝜙 cos 𝜃 − cos𝜙 sin 𝜃 sin𝜙 sin 𝜃 + cos𝜙 cos 𝜃

]

=
[

cos(𝜙 − 𝜃) − sin(𝜙 − 𝜃)
sin(𝜙 − 𝜃) cos(𝜙 − 𝜃)

]

.

This is different from the original. In fact, it is the opposite rotation (and thus the matrix’s inverse).
We didn’t really have to do the matrix multiplication. We could have substituted the rather confusing 𝜃 = 𝜙′

and 𝜙 = 𝜃′ into the original expression and gotten the same result. Oh well.

4. We’ve found specific matrices which map the plane in the following ways:

• identity;

• rotation about the origin by 𝜃;

• reflection over a line 𝑦 = 𝑥 tan 𝜃
2 ;

• size change by some factor centered at the origin;

• stretching along a specific line through the origin by some factor;

• shearing perpendicular to a specific line through the origin by some factor.

We want to generalize those ideas. What does each of the following matrices do? Be quantitative
by specifying angle, equation of line, and/or factor:

(a)
[

1 0
0 1

]

This is the identity matrix; it does nothing.

(b)
[

𝑎 0
0 𝑎

]

This matrix scales (or dilates) through the origin by a factor of 𝑎.

(c)
[

cos 𝜃 − sin 𝜃
sin 𝜃 cos 𝜃

]

This matrix rotates counterclockwise by 𝜃.

(d)
[

cos 𝜃 sin 𝜃
− sin 𝜃 cos 𝜃

]

This is initially rather mysterious, but if we recall that cos 𝜃 = cos−𝜃 and sin −𝜃 = − sin 𝜃, we realize that
this matrix can be rewritten:

[

cos 𝜃 sin 𝜃
− sin 𝜃 cos 𝜃

]

=
[

cos−𝜃 − sin−𝜃
sin −𝜃 cos−𝜃

]

.

This makes it clear that it is a rotation clockwise by 𝜃.
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(e)
[

𝑎 0
0 1

]

This is a stretch (or squish) along the 𝑥-axis by a factor of 𝑎.

(f)
[

1 0
0 𝑎

]

This is a stretch (or squish) along the 𝑦-axis by a factor of 𝑎.

(g)
[

1 𝑎
0 1

]

This is a shear along the 𝑥-axis by a factor of 𝑎.

(h)
[

1 0
𝑎 1

]

This is a shear along the 𝑦-axis by a factor of 𝑎.

(i)
[

𝑎 𝑏
𝑐𝑎 𝑐𝑏

]

Again, this seems a bit foreign. Multiplying it by a point (𝑢, 𝑣), though, we see its true meaning:
[

𝑎 𝑏
𝑐𝑎 𝑐𝑏

] [

𝑢
𝑣

]

=
[

𝑎𝑢 + 𝑏𝑣
𝑐(𝑎𝑢 + 𝑏𝑣)

]

.

Letting 𝑡 = 𝑎𝑢 + 𝑏𝑣, we see that this parametrizes the line 𝑡
[

1
𝑐

]

. In standard form, this is 𝑐𝑥 − 𝑦 = 0; in

sane person’s form, this is 𝑦 = 𝑐𝑥.

(j)
[

−1 0
0 1

]

This is a negation of the 𝑥 coordinate, or a reflection about the 𝑦-axis.

(k)
[

0 −1
−1 0

]

As we found earlier, this is a reflection about the line 𝑦 = −𝑥.

(l)
[

cos 2𝜃 sin 2𝜃
sin 2𝜃 −cos 2𝜃

]

Another rather foreign one. We notice that it is similar to the rotation matrix by 2𝜃, but the right column is
negated. As a matrix multiplication, we have

[

cos 2𝜃 sin 2𝜃
sin 2𝜃 −cos 2𝜃

]

=
[

cos 2𝜃 − sin 2𝜃
sin 2𝜃 cos 2𝜃

] [

1 0
0 −1

]

.

Thus, this matrix is a reflection about the 𝑥-axis, followed by a rotation of 2𝜃 counterclockwise. We know
a reflection followed by a rotation is a reflection, so what axis is this reflection about?

Well, an easy way to find out is to note which points remain fixed after the matrix transformation, as these
will be precisely the points on the line of reflection. Let the point be (𝑐, 1), since then (𝑡𝑐, 𝑡) gives every point
on the line of reflection. We wish to solve the system of equations

[

cos 2𝜃 sin 2𝜃
sin 2𝜃 −cos 2𝜃

] [

𝑐
1

]

=
[

𝑐
1

]

.

Multiplying out the left side, we get
[

𝑐 cos 2𝜃 + sin 2𝜃
𝑐 sin 2𝜃 − cos 2𝜃

]

=
[

𝑐
1

]

.
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Equating corresponding parts, we get the system of equations
{

𝑐 cos 2𝜃 + sin 2𝜃 = 𝑐
𝑐 sin 2𝜃 − cos 2𝜃 = 1

.

The second equation gives us 𝑐 = 1+cos 2𝜃
sin 2𝜃 . By the double angle formula, this is

𝑐 = 1 + 2 cos2 𝜃 − 1
2 cos 𝜃 sin 𝜃

= 2 cos2 𝜃
2 cos 𝜃 sin 𝜃

= cos 𝜃
sin 𝜃

= cot 𝜃.

Thus, the line can be parameterized as (𝑡 cot 𝜃, 𝑡). In standard form, this is 𝑥−𝑦 cot 𝜃 = 0; in sane person’s
form, this is 𝑦 = 𝑥 tan 𝜃. Thus, this matrix is a reflection over the line 𝑦 = 𝑥 tan 𝜃, which is the line 𝜃 = 𝜃 in
polar coordinates. That’s some unfortunate notation, but I hope you get what I mean.

5. What matrix/transformation undoes each of a through l? For instance, matrix x is a rotation of
𝜃. It is undone by a rotation of −𝜃.

(a)
[

1 0
0 1

]

The inverse of the identity matrix is itself:
[

1 0
0 1

]

.

(b)
[

𝑎 0
0 𝑎

]

The inverse is a scaling by 1
𝑎 :

[

1
𝑎 0
0 1

𝑎

]

.

(c)
[

cos 𝜃 − sin 𝜃
sin 𝜃 cos 𝜃

]

This matrix rotates counterclockwise by 𝜃. Thus, the inverse is a rotation by −𝜃—or a rotation clockwise

by 𝜃—which is
[

cos 𝜃 sin 𝜃
− sin 𝜃 cos 𝜃

]

(the subject of the next problem).

(d)
[

cos 𝜃 sin 𝜃
− sin 𝜃 cos 𝜃

]

This is a rotation clockwise by 𝜃, so the inverse is a matrix rotating counterclockwise by 𝜃:
[

cos 𝜃 − sin 𝜃
sin 𝜃 cos 𝜃

]

,

the subject of the previous problem.

(e)
[

𝑎 0
0 1

]

This is a stretch (or squish) along the 𝑥-axis by a factor of 𝑎. Thus, the inverse is a stretch along the 𝑥-axis

by a factor of 1
𝑎 :

[ 1
𝑎 0
0 1

]

.

(f)
[

1 0
0 𝑎

]

This is a stretch (or squish) along the 𝑦-axis by a factor of 𝑎. Thus, the inverse is a stretch along the 𝑦-axis

by a factor of 1
𝑎 :

[

1 0
0 1

𝑎

]

.

(g)
[

1 𝑎
0 1

]
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This is a shear along the 𝑥-axis by a factor of 𝑎. Thus, the inverse is a shear along the 𝑥-axis by a factor

of −𝑎:
[

1 −𝑎
0 1

]

.

(h)
[

1 0
𝑎 1

]

This is a shear along the 𝑦-axis by a factor of 𝑎. Thus, the inverse is a shear along the 𝑦-axis by a factor

of −𝑎:
[

1 0
−𝑎 1

]

.

(i)
[

𝑎 𝑏
𝑐𝑎 𝑐𝑏

]

This matrix doesn’t have an inverse, because multiple points can be mapped to the same point. For

example, if 𝑎 = 𝑏 = 𝑐 = 1, then the matrix is
[

1 1
1 1

]

. Then for example, both
[

0
0

]

and
[

1 −1
]

are mapped to
[

0
0

]

.

(j)
[

−1 0
0 1

]

This is a negation of the 𝑥 coordinate, or a reflection about the 𝑦-axis. Since it’s a reflection, the inverse is

itself:
[

−1 0
0 1

]

.

(k)
[

0 −1
−1 0

]

As we found earlier, this is a reflection about the line 𝑦 = −𝑥. Since it’s a reflection, the inverse is itself:
[

0 −1
−1 0

]

.

(l)
[

cos 2𝜃 sin 2𝜃
sin 2𝜃 −cos 2𝜃

]

We found that this matrix is a reflection over the line 𝑦 = 𝑥 tan 𝜃. Since it’s a reflection, it is its own inverse:
[

cos 2𝜃 sin 2𝜃
sin 2𝜃 −cos 2𝜃

]

.

6. In this problem, you will observe the effects of multiplying two or more matrices. Do the following
matrix multiplications, graph the preimage

[ 1 0
0 1

]

and image, then identify the transformations
and their order. Note the effect of order on the outcome!

(a)
[

1 2
0 1

] [

.6 −.8

.8 .6

]

[

1 2
0 1

] [

.6 −.8

.8 .6

]

=
[

2.2 0.4
0.8 0.6

]

.

This is a rotation of tan−1 4
3 ≈ 53.13◦, followed by a shear along the 𝑥-axis by a factor of 2.

𝑦

𝑥
𝐴

𝐵 𝐴′
𝐵′

(b)
[

.6 −.8

.8 .6

] [

1 2
0 1

]
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[

.6 −.8

.8 .6

] [

1 2
0 1

]

=
[

0.6 0.4
0.8 2.2

]

.

This is a shear along the 𝑥-axis by a factor of 2, followed by a rotation of tan−1 4
3 ≈ 53.13◦. The order does

change the outcome as compared with the previous problem.

𝑦

𝑥
𝐴

𝐵

𝐴′

𝐵′

(c)
[

4 0
0 1

]

⎡

⎢

⎢

⎣

√

3
2

1
2

− 1
2

√

3
2

⎤

⎥

⎥

⎦

[

4 0
0 1

]

⎡

⎢

⎢

⎣

√

3
2

1
2

− 1
2

√

3
2

⎤

⎥

⎥

⎦

=

[

2
√

3 2

− 1
2

√

3
2

]

.

This is a rotation of −30◦, followed by a stretch along the 𝑥-axis by a factor of 4.

𝑦

𝑥
𝐴

𝐵

𝐴′

𝐵′

(d)
⎡

⎢

⎢

⎣

√

3
2

1
2

− 1
2

√

3
2

⎤

⎥

⎥

⎦

[

4 0
0 1

]

⎡

⎢

⎢

⎣

√

3
2

1
2

− 1
2

√

3
2

⎤

⎥

⎥

⎦

[

4 0
0 1

]

=

[

2
√

3 1
2

−2
√

3
2

]

.

This is a stretch along the 𝑥-axis by a factor of 4, followed by a rotation of 60◦.

𝑦

𝑥
𝐴

𝐵

𝐴′

𝐵′

(e)
[

.8 .6
−.6 .8

] [

5 0
0 5

]
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[

.8 .6
−.6 .8

] [

5 0
0 5

]

=
[

4 3
−3 4

]

.

This is a dilation by a factor of 5, followed by a rotation of tan−1 − 3
4 ≈ −36.87◦.

𝑦

𝑥
𝐴

𝐵

𝐴′

𝐵′

(f)
[

5 0
0 5

] [

.8 .6
−.6 .8

]

[

5 0
0 5

] [

.8 .6
−.6 .8

]

=
[

4 3
−3 4

]

.

This is a rotation of tan−1 − 3
4 ≈ −36.87◦, followed by a dilation by a factor of 5. In this case, order doesn’t

matter.

𝑦

𝑥
𝐴

𝐵

𝐴′

𝐵′

(g)
[

.6 −.8

.8 .6

] [

.8 −.6

.6 .8

]

[

.6 −.8

.8 .6

] [

.8 −.6

.6 .8

]

=
[

0 −1
1 0

]

.

This is a rotation of tan−1 3
4 ≈ 36.87◦, followed by a rotation by tan−1 4

3 ≈ 53.13◦.

𝑦

𝑥𝐴

𝐴′ = 𝐵

𝐵′

(h)
[

.6 .8

.8 −.6

] [

.6 .8

.8 −.6

]
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[

.6 .8

.8 −.6

] [

.6 .8

.8 −.6

]

=
[

1 0
0 1

]

.

This is a reflection about the line 𝜃 = 1
2 tan

−1 4
3 ≈ 26.57◦, followed by the same reflection, which yields the

identity.

𝑦

𝑥
𝐴

𝐵𝐴′

𝐵′

(i)
[

.6 .8

.8 −.6

] [

.8 .6

.6 −.8

]

[

.6 .8

.8 −.6

] [

.8 .6

.6 −.8

]

=
[

0.96 −0.28
0.28 0.96

]

.

This is a reflection about the line 𝜃 = 1
2 tan

−1 3
4 ≈ 18.43◦, followed by a reflection about the line 𝜃 =

1
2 tan

−1 4
3 ≈ 26.57◦.

𝑦

𝑥
𝐴

𝐵

𝐴′

𝐵′

7. A linear mapping 𝑓 is one in which all lines are mapped to lines and the origin remains a fixed
point. Algebraically, 𝑓

([ 𝑥
𝑦
])

= 𝑥𝑓
([ 1

0
])

+ 𝑦𝑓
([ 0

1
])

. I claim that we can build any linear mapping
of the plane by multiplying together some combination of the matrices from Problem 4. Only two
classes of matrix, however, are necessary; all other matrices are products or examples of these.
Which two classes of matrix do you think comprise the minimum set from which the others can
be composed? Be able to justify your choice.

(Answers may vary.) Stretches and shears seem like the most general classes of transformations, but they
cannot change orientation like reflection. All together, these three classes of transformations can generate all
linear transformations. We could extend our definition of "stretch" to include negative scaling factors, which
would include reflections as well.

8. Write matrix products that perform the following mappings. Do the indicated multiplication and
graph the preimage and image when applied to (1, 0) and (0, 1).

(a) Rotation by 135◦ followed by a shear by a factor of 1
2 perpendicular to the 𝑦-axis

The matrix multiplication is as follows:

[

1 1
2

0 1

] [

cos 135◦ − sin 135◦
sin 135◦ cos 135◦

]

=
[

1 1
2

0 1

]

⎡

⎢

⎢

⎣

−
√

2
2 −

√

2
2

√

2
2 −

√

2
2

⎤

⎥

⎥

⎦

=
⎡

⎢

⎢

⎣

−
√

2
4 − 3

√

2
4

√

2
2 −

√

2
2

⎤

⎥

⎥

⎦

.

Note that a shear perpendicular to the 𝑦-axis is parallel with the 𝑥-axis. The graph is below.
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𝑦

𝑥
𝐴

𝐵
𝐴′

𝐵′

(b) Same transformations as in (a), but reversed

The matrix multiplication is as follows:

⎡

⎢

⎢

⎣

−
√

2
2 −

√

2
2

√

2
2 −

√

2
2

⎤

⎥

⎥

⎦

[

1 1
2

0 1

]

=
⎡

⎢

⎢

⎣

−
√

2
2 − 3

√

2
4

√

2
2 −

√

2
4

⎤

⎥

⎥

⎦

.

The graph is below.

𝑦

𝑥
𝐴

𝐵
𝐴′

𝐵′

(c) Stretch in the 𝑦 direction by a factor of 3 followed by a rotation of 60◦

The matrix multiplication is as follows:

[

cos 60◦ − sin 60◦
sin 60◦ cos 60◦

] [

1 0
0 3

]

=
⎡

⎢

⎢

⎣

1
2 −

√

3
2

√

3
2

1
2

⎤

⎥

⎥

⎦

[

1 0
0 3

]

=
⎡

⎢

⎢

⎣

1
2 − 3

√

3
2

√

3
2

3
2

⎤

⎥

⎥

⎦

.

𝑦

𝑥
𝐴

𝐵 𝐴′

𝐵′

(d) Same transformations as in (c), but reversed

The matrix multiplication is as follows:

[

1 0
0 3

]

⎡

⎢

⎢

⎣

1
2 −

√

3
2

√

3
2

1
2

⎤

⎥

⎥

⎦

=
⎡

⎢

⎢

⎣

1
2 −

√

3
2

3
√

3
2

3
2

⎤

⎥

⎥

⎦

.

𝑦

𝑥
𝐴

𝐵

𝐴′

𝐵′

(e) Projection onto the line 𝑦 = 5𝑥
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We might think that any old matrix like
[

1 1
5 5

]

, which takes every point to a point on the line 𝑦 = 5𝑥,

may work. This matrix, however, is not a projection. In a projection to a line, the image of a point is the foot of
the altitude from the point to the line.

To map every point onto 𝑦 = 5𝑥, the matrix must be of the form 𝑐
[

1 1
5 5

]

for some real constant 𝑐. To

make it a true projection, we choose a point that’s already on 𝑦 = 5𝑥 and note that it must map to itself. In this
case, we’ll choose (1, 5). then

𝑐
[

1 1
5 5

] [

1
5

]

=
[

1
5

]

𝑐
[

6
30

]

=
[

1
5

]

⟹ 𝑐 = 1
6
.

Thus, the transformation matrix is

[

1
6

1
6

5
6

5
6

]

.

𝑦

𝑥
𝐴

𝐵

𝐴′ = 𝐵′

(f) Reflection over 𝜃 = 𝜋
12 followed by a stretch in the 𝑥 direction by a factor of 2

We recall that a reflection over the line 𝜃 = 𝜙 is the matrix
[

cos 2𝜙 sin 2𝜙
sin 2𝜙 −cos 2𝜙

]

. Substituting 𝜙 = 𝜋
12

yields the matrix

[

cos 𝜋
6 sin 𝜋

6
sin 𝜋

6 −cos 𝜋
6

]

=
⎡

⎢

⎢

⎣

√

3
2

1
2

1
2 −

√

3
2

⎤

⎥

⎥

⎦

.

Stretching in the 𝑥 direction by a factor of 2 is just
[

2 0
0 1

]

. Thus, the total transformation matrix is

[

2 0
0 1

]

⎡

⎢

⎢

⎣

√

3
2

1
2

1
2 −

√

3
2

⎤

⎥

⎥

⎦

=

[ √

3 1
1
2 −

√

3
2

]

.

𝑦

𝑥
𝐴

𝐵

𝐴′

𝐵′
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(g) Same transformations as in (f), but reversed

⎡

⎢

⎢

⎣

√

3
2

1
2

1
2 −

√

3
2

⎤

⎥

⎥

⎦

[

2 0
0 1

]

=

[
√

3 1
2

1 −
√

3
2

]

𝑦

𝑥
𝐴

𝐵 𝐴′

𝐵′

9. Write a set of matrices which undoes Problems a to g. You will find one of them impossible to
undo; explain why.

(a) Rotation by 135◦ followed by a shear by a factor of 1
2 perpendicular to the 𝑦-axis

We shear by − 1
2 along the 𝑥-axis, then rotate −135◦.

[

cos−135◦ − sin−135◦
sin −135◦ cos−135◦

] [

1 − 1
2

0 1

]

=
⎡

⎢

⎢

⎣

−
√

2
2

√

2
2

−
√

2
2 −

√

2
2

⎤

⎥

⎥

⎦

[

1 − 1
2

0 1

]

=
⎡

⎢

⎢

⎣

−
√

2
2

3
√

2
4

−
√

2
2

√

2
4

⎤

⎥

⎥

⎦

(b) Same transformations as in (a), but reversed

We rotate −135◦, then shear by − 1
2 along the 𝑥-axis.

[

1 − 1
2

0 1

]

⎡

⎢

⎢

⎣

−
√

2
2

√

2
2

−
√

2
2 −

√

2
2

⎤

⎥

⎥

⎦

=
⎡

⎢

⎢

⎣

−
√

2
4

3
√

2
4

−
√

2
2 −

√

2
2

⎤

⎥

⎥

⎦

.

(c) Stretch in the 𝑦 direction by a factor of 3 followed by a rotation of 60◦

We rotate by −60◦, then stretch by 1
3 in the 𝑦 direction.

[

1 0
0 1

3

] [

cos−60◦ − sin−60◦
sin −60◦ cos−60◦

]

=
[

1 0
0 1

3

]

⎡

⎢

⎢

⎣

1
2

√

3
2

−
√

3
2

1
2

⎤

⎥

⎥

⎦

=
⎡

⎢

⎢

⎣

1
2

√

3
2

−
√

3
6

1
6

⎤

⎥

⎥

⎦

.

(d) Same transformations as in (c), but reversed

We stretch by 1∕3 in the 𝑦 direction, then rotate by −60◦.

⎡

⎢

⎢

⎣

1
2

√

3
2

−
√

3
2

1
2

⎤

⎥

⎥

⎦

[

1 0
0 1∕3

]

=
⎡

⎢

⎢

⎣

1
2

√

3
6

−
√

3
2

1
6

⎤

⎥

⎥

⎦

.

(e) Projection onto the line 𝑦 = 5𝑥

This matrix doesn’t have an inverse, because multiple points map to the same point. For example, both
(0, 0) and (5,−1) project to (0, 0)

(f) Reflection over 𝜃 = 𝜋
12 followed by a stretch in the 𝑥 direction by a factor of 2
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We stretch by a factor of 1
2 in the 𝑥 direction, then apply our old reflection matrix:

⎡

⎢

⎢

⎣

√

3
2

1
2

1
2 −

√

3
2

⎤

⎥

⎥

⎦

[ 1
2 0
0 1

]

=
⎡

⎢

⎢

⎣

√

3
4

1
2

1
4 −

√

3
2

⎤

⎥

⎥

⎦

.

(g) Same transformations as in (f), but reversed

We first apply our old reflection matrix, then stretch by a factor of 1
2 in the 𝑥 direction:

[ 1
2 0
0 1

]

⎡

⎢

⎢

⎣

√

3
2

1
2

1
2 −

√

3
2

⎤

⎥

⎥

⎦

=
⎡

⎢

⎢

⎣

√

3
4

1
4

1
2 −

√

3
2

⎤

⎥

⎥

⎦

.

10.

(a) Find the height of the parallelogram in Figure 2 in terms of 𝑏 and a trig function in terms of
𝜑.

We see that sin𝜑 = ℎ∕𝑏, so ℎ = 𝑏 sin𝜑.

(b) Find the area of the parallelogram in terms of 𝑎, 𝑏, and 𝜑.

Let 𝐴 be the area of the parallelogram. We have 𝐴 = 𝑎ℎ, and using information from the previous problem,
we know that 𝐴 = 𝑎𝑏 sin𝜑.

𝜑
ℎ𝑏

𝑎

ℎ𝑏

𝑎
𝜃

𝜙

𝑃

𝑄

𝑅

𝑆
(𝑎, 𝑏)

(𝑐, 𝑑)

(𝑎 + 𝑐, 𝑏 + 𝑑)

Figure 2: A parallelogram. Figure 3: The parallelogram in
the 𝑥𝑦 plane.

Figure 4: Scenario for Prob-
lem 12.

11. In Figure 3, we have put our parallelogram onto the 𝑥𝑦 plane so that 𝑎 makes an angle of 𝜃 with
the 𝑥 axis and 𝑏 makes an angle of 𝜙 with the 𝑥 axis. Thus, 𝜑 = 𝜙 − 𝜃.

(a) Rewrite the equation for the area of the parallelogram in terms of 𝜃 and 𝜙.

We substitute 𝜑 = 𝜙 − 𝜃 to find that 𝐴 = 𝑎𝑏 sin(𝜙 − 𝜃).

(b) Find the 𝑥 and 𝑦 coordinates of 𝑃 ,𝑄,𝑅, 𝑆 in terms of 𝑎, 𝑏, 𝜙, 𝜃.

The vector ⃖⃖⃖⃖⃖⃗𝑃𝑆 is just ⟨𝑎 cos 𝜃, 𝑎 sin 𝜃⟩, and the vector ⃖⃖⃖⃖⃖⃗𝑃𝑄 is just ⟨𝑏 cos𝜙, 𝑏 sin𝜙⟩. Thus, we have the
following coordinates for 𝑃 ,𝑄,𝑅, 𝑆:

𝑃 = (0, 0)

𝑄 = 𝑃 + ⃖⃖⃖⃖⃖⃗𝑃𝑄 = (𝑏 cos𝜙, 𝑏 sin𝜙)

𝑅 = 𝑃 + ⃖⃖⃖⃖⃖⃗𝑃𝑄 + ⃖⃖⃖⃖⃖⃗𝑃𝑆 = (𝑎 cos 𝜃 + 𝑏 cos𝜙, 𝑎 sin 𝜃 + 𝑏 sin𝜙)

𝑆 = 𝑃 + ⃖⃖⃖⃖⃖⃗𝑃𝑆 = (𝑎 cos 𝜃, 𝑎 sin 𝜃)
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(c) Write a matrix so that the first column contains the coordinates of 𝑆 and the second col-
umn contains the coordinates of 𝑄. This matrix maps the plane.

The matrix is 𝑀 =
[

𝑎 cos 𝜃 𝑏 cos𝜙
𝑎 sin 𝜃 𝑏 sin𝜙

]

, with 𝑆 in the first column and 𝑄 in the second. Thus, (1, 0) is

mapped to 𝑆 and (0, 1) is mapped to 𝑄.

(d) Your matrix has two diagonals. One rises from left to right and the other descends from
left to right. Subtract the product of the entries of the ascending diagonal from the product
of those of the descending diagonal.

This is the determinant of the matrix 𝑀 in the previous answer, which can be computed as

det𝑀 = (𝑎 cos 𝜃)(𝑏 sin𝜙)
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟
descending diagonal

− (𝑏 cos𝜙)(𝑎 sin 𝜃)
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟
ascending diagonal

= 𝑎𝑏 cos 𝜃 sin𝜙 − 𝑎𝑏 cos𝜙 sin 𝜃.

(e) Use angle addition formulas to simplify your answer.

𝑎𝑏 cos 𝜃 sin𝜙 − 𝑎𝑏 cos𝜙 sin 𝜃 = 𝑎𝑏(cos 𝜃 sin𝜙 − cos𝜙 sin 𝜃) = 𝑎𝑏 sin(𝜙 − 𝜃).

(f) You should find some relationship between your answers to problems 11a and 11d. What
is it?

The answers are equal!

(g) Given a 2 × 2 matrix, the product of the descending diagonal minus the product of the

ascending diagonal yields the determinant of the matrix, written det
[

𝑎 𝑐
𝑏 𝑑

]

= 𝑎𝑑 − 𝑏𝑐.

What does it measure?

It measures the area (in terms of magnitude) of the parallelogram formed by the two vectors ⟨𝑎, 𝑏⟩ and
⟨𝑐, 𝑑⟩. The determinant corresponds to the area of the parallelogram.

(h) Find a matrix which produces a rotation. What is its determinant?
[

0 −1
1 0

]

is such a matrix. It has a determinant of (0)(0) − (−1)(1) = 1.

(i) Find a matrix that produces a reflection.
[

−1 0
0 1

]

is such a matrix.

iv. What is the absolute value of its determinant?

The absolute value of its determinant is |(−1)(1) − (0)(0)| = | − 1| = 1.

v. How does its determinant differ from that of a rotation matrix?

It is negative, while a rotation matrix’s determinant is positive.

vi. What property is not conserved under reflection?

Orientation (or “handedness,” “chirality,” whatever you want to call it) is not preserved.

(j) Find a matrix that produces a dilation.
[

2 0
0 2

]

is such a matrix.

vii. What is its determinant?
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It has a determinant of (2)(2) − (0)(0) = 4.

viii. What does the size of its determinant indicate?

This size of its determinant indicates the amount by which areas will be scaled by. If it is negative, than
the orientation is changed. If it is zero, then the transformation is degenerate; it’s a mapping to a line or the
origin.

12. Here is another way to think about the area of the image of the unit square under a linear trans-

formation. First, we use the matrix
[

𝑎 𝑐
𝑏 𝑑

]

to transform the unit square into a parallelogram.

Then, we graph the image.

(a) There are three rectangles and four triangles in Figure 4. Find the dimensions and the area
of each one. You can use this information to figure out the area of the parallelogram in
terms of 𝑎, 𝑏, 𝑐, and 𝑑. Write a sentence or equation explaining how you can use the seven
areas to find the area of the parallelogram.

Possible sentence: The area of the parallelogram is the sum of the areas of the two big rectangles, minus
the sum of all the areas shaded in bricks. Possible equation: 𝐴parallelogram = 𝐴large rectangles − 𝐴triangles −
𝐴small rectangle.

(b) Carry out the algebra to find the area.

The large rectangles are each 𝑐 units wide and 𝑏 units tall, so they have a total area of 2𝑏𝑐. There are two
sets of two congruent triangles here. We can combine each set together to create two rectangles with an area
of 𝑎𝑏 and 𝑐𝑑, respectively. Finally, the small rectangle has area (𝑐−𝑎)(𝑏−𝑑). The area of the parallelogram is

2𝑏𝑐 − (𝑎𝑏 + 𝑐𝑑) − (𝑐 − 𝑎)(𝑏 − 𝑑) = 2𝑏𝑐 − (𝑎𝑏 + 𝑐𝑑) − (𝑏𝑐 + 𝑎𝑑 − 𝑎𝑏 − 𝑐𝑑) = 𝑏𝑐 − 𝑎𝑑.

(c) Calculate the determinant of the matrix.

The determinant is det
[

𝑎 𝑐
𝑏 𝑑

]

= 𝑎𝑑 − 𝑏𝑐.

(d) What is the relationship between the determinant of the matrix and the area of its associ-
ated parallelogram?

The determinant of the matrix is the area of its associated parallelogram negated. In mathematical terms,

𝐴𝑝𝑎𝑟𝑎𝑙𝑙𝑒𝑙𝑜𝑔𝑟𝑎𝑚 = 𝑏𝑐 − 𝑎𝑑 = −(𝑎𝑑 − 𝑏𝑐) = − det
[

𝑎 𝑐
𝑏 𝑑

]

.

(e) Consider what happens if (𝑎, 𝑏) and (𝑐, 𝑑) switch places in the graph.

i. How would the area you calculated be different?

The new area would be 𝑎𝑑 − 𝑏𝑐, and thus the negative of what it was before!

ii. What property would now be preserved by the transformation?

Orientation (or chirality or handedness whatever) would now be preserved.

iii. What isometry would have been included in any composition of simple transforma-
tions yielding the mapping?

Any such composition would require a reflection, because all the other simple transformations do not flip.

iv. What would be true of the determinant?

The determinant would be positive, since it is now equal to the (necessarily positive) area of the parallelo-
gram.

(f)
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i. What does a reversal of the orientation of figure in its image say about the determi-
nant of the transformation matrix?

It says that the determinant is negative.

ii. What does that same property of the determinant imply that a transformational matrix
does?

It implies that a transformation matrix reverses the orientation of a figure.

iii. What isometry reverses orientation?

Reflections reverse orientation; rotations don’t.

(g)

i. What would have happened to the parallelogram if we replaced 𝑐, 𝑑 in the matrix with
𝑘𝑐, 𝑘𝑑 for some 𝑘 > 0, so that the transformation matrix is

[ 𝑎 𝑘𝑐
𝑏 𝑘𝑑

]

?

The parallelogram would become lengthened in the direction of (𝑐, 𝑑), by a factor of 𝑘. See the diagram:

(𝑎, 𝑏)

(𝑐, 𝑑)

(𝑎 + 𝑐, 𝑏 + 𝑑)

(𝑘𝑐, 𝑘𝑑)

(𝑎 + 𝑘𝑐, 𝑏 + 𝑘𝑑)

Figure 5: The parallelogram gets scaled by a factor of 𝑘. In this case, 𝑘 = 1.7.

ii. What would its area be?

Its area would be scaled by a factor of 𝑘; it would be 𝑘(𝑏𝑐 − 𝑎𝑑).

iii. What would the determinant of the matrix be?

The determinant of the matrix would be 𝑘(𝑎𝑑 − 𝑏𝑐).

iv. What if [ 𝑏 𝑑 ] = 𝑟 [ 𝑎 𝑐 ]? That is, what if the second row of the matrix was a linear
multiple of the first row?

In this case, the the two vectors constructing the parallelogram are collinear. Thus, the transformation
collapses to a line.

134



i. iii.

iv.
Not to scale

v.
Not to scale

vi.

Figure 6: The undoing
steps, visualized.

i. The determinant is not 0, so we continue.

ii. 𝑎 ≠ 0, so we continue.

iii.
[ 1

2 0
0 1

] [

2 3
4 1

]

=
[

1 3
2

4 1

]

.

iv.
[

1 0
−4 1

] [

1 3
2

4 2

]

=
[

1 3
2

0 −5

]

.

v.
[

1 0
0 − 1

5

] [

1 3
2

0 5

]

=
[

1 3
2

0 1

]

.

vi.
[

1 − 3
2

0 1

] [

1 3
2

0 1

]

=
[

1 0
0 1

]

.

13. Look at Figure 6 and describe the transformation in each step.

iii. We stretch by a factor of 1
2 in the 𝑥 direction. iv. We shear by a factor of −4 in the 𝑦 direction

(perpendicular to the 𝑥 direction). v. We stretch by a factor of − 1
5 in the 𝑦 direction. vi. We shear by a factor

of − 3
2 in the 𝑥 direction.

14.

(a) How do you undo a shear in the 𝑥 direction?
[ ] [

1 𝑠
0 1

]

=
[

1 0
0 1

]

[

1 −𝑠
0 1

] [

1 𝑠
0 1

]

=
[

1 0
0 1

]

.

(b) How do you undo a stretch along the 𝑥-axis?
[ ] [

𝑥 0
0 1

]

=
[

1 0
0 1

]

[ 1
𝑥 0
0 1

] [

𝑥 0
0 1

]

=
[

1 0
0 1

]

.

(c) How do you undo a shear in the 𝑦 direction?
[ ] [

1 0
𝑠 1

]

=
[

1 0
0 1

]

[

1 0
−𝑠 1

] [

1 0
𝑠 1

]

=
[

1 0
0 1

]

.

(d) How do you undo a stretch along the 𝑦-axis?
[ ] [

1 0
0 𝑦

]

=
[

1 0
0 1

]

[

1 0
0 1

𝑦

]

[

1 0
0 𝑦

]

=
[

1 0
0 1

]

.
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15. Now let’s put this all together. Undo each of the operations in turn, until only matrix
[ 𝑎 𝑐
𝑏 𝑑

]

remains
on the left side. Remember that what you do on the left side of the expression must also be
done to the right side, so on the right side you will see the basic operations from which

[ 𝑎 𝑐
𝑏 𝑑

]

is
composed. Order is important!

[ ] [ ] [ ] [ ] [

1 − 𝑐
𝑎

0 1

] [

1 0
0 𝑎

𝑎𝑑−𝑏𝑐

] [

1 0
−𝑏 1

] [ 1
𝑎 0
0 1

] [

𝑎 𝑐
𝑏 𝑑

]

⟹

[ ] [ ] [ ] [ ] [

1 0
0 1

]

=
[

𝑎 𝑐
𝑏 𝑑

]

undoes
undoes

undoes
undoes

These are the matrices all filled in:

[

𝑎 0
0 1

] [

1 0
𝑏 1

] [

1 0
0 𝑎𝑑−𝑏𝑐

𝑎

] [

1 𝑐
𝑎

0 1

] [

1 0
0 1

]

=
[

𝑎 𝑐
𝑏 𝑑

]

16. Each step in the decomposition of
[

3 4
2 −5

]

is explained below.

(i) Stretch along the 𝑥-axis by factor of 1
3 .

[ 1
3 0
0 1

] [

3 4
2 −5

]

=
[

1 4
3

2 −5

]

(ii) Shear perpendicular to the 𝑥-axis by −2

[

1 0
−2 1

] [

1 4
3

2 −5

]

=

[

1 4
3

0 − 23
3

]

(iii) Stretch along 𝑦-axis by − 3
23

[

1 0
0 − 3

23

]

[

1 4
3

0 − 23
3

]

=
[

1 4
3

0 1

]

(iv) Shear perpendicular to the 𝑦-axis by − 4
3

[

1 − 4
3

0 1

] [

1 4
3

0 1

]

=
[

1 0
0 1

]

Taken all together, the decomposition is:
[

1 − 4
3

0 1

] [

1 0
0 − 3

23

] [

1 0
−2 1

] [ 1
3 0
0 1

] [

3 4
2 −5

]

.

Therefore:
[

3 4
2 −5

]

=
[

3 0
0 1

] [

1 0
2 1

] [

1 0
0 − 23

3

] [

1 4
3

0 1

]

.

What does each matrix do?

Going from right to left, the first matrix shears by 4
3 in the 𝑥 direction (perpendicular to the 𝑦-axis). The

second matrix stretches by − 23
3 in the 𝑦 direction. The third matrix shears by 2 in the 𝑦 direction (perpendicular

to the 𝑥-axis). The fourth and final matrix stretches by 3 in the 𝑥 direction.

17. Here is another way that you could have decomposed the above matrix.
i

[

1 0
0 13

23

]

ii
[

1 − 2
23

0 1

]

iii

⎡

⎢

⎢

⎣

1
√

13
0

0 1
√

13

⎤

⎥

⎥

⎦

iv

⎡

⎢

⎢

⎣

3
√

13
− 2

√

13
2

√

13
3

√

13

⎤

⎥

⎥

⎦

v
[

1 0
0 −1

] [

3 4
2 −5

]

=
[

1 0
0 1

]

.

(a) Identify what matrices i through v each do.

i scales by 13
23 along the 𝑦-axis. ii shears by − 2

23 . iii scales by 1
√

13
. iv rotates by tan−1 2

3 . 𝑣 reflects over the

𝑥-axis (since the 𝑦 coordinate is being flipped).
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17. (cont.) Next, we undo this sequence of operations by working backwards.

i
[

1 0
0 −1

]

ii

⎡

⎢

⎢

⎣

3
√

13
2

√

13
− 2

√

13
3

√

13

⎤

⎥

⎥

⎦

iii
[

√

13 0
0

√

13

]

iv
[

1 2
23

0 1

]

v
[

1 0
0 23

13

] [

1 0
0 1

]

=
[

3 4
2 −5

]

.

(b) Explain what happens at each matrix, i through v.

i reflects over the 𝑥-axis, since the 𝑦 coordinate is being flipped. ii rotates by − tan−1 2
3 . iii scales by

√

13.

iv shears by 2
23 along the 𝑥-axis. Finally, v scales by 23

13 .

18. Find a set of basic transformations which is equivalent to each of the following matrices.

(a)
[

12 8
5 15

]

(Answers may vary.)
Using the method we described, we first stretch along the 𝑥-axis by 1

12 :

[ 1
12 0
0 1

] [

12 8
5 15

]

=
[

1 2
3

5 15

]

.

We then shear along the 𝑦-axis by −5:

[

1 0
−5 1

] [ 1
12 0
0 1

] [

12 8
5 15

]

=

[

1 2
3

0 35
3

]

.

We then stretch along the 𝑦-axis by 3
35 :

[

1 0
0 3

35

] [

1 0
−5 1

] [ 1
12 0
0 1

] [

12 8
5 15

]

=
[

1 2
3

0 1

]

.

Finally, we shear by − 2
3 along the 𝑥-axis:

[

1 − 2
3

0 1

] [

1 0
0 3

35

] [

1 0
−5 1

] [ 1
12 0
0 1

] [

12 8
5 15

]

=
[

1 0
0 1

]

.

Now we undo the operations in turn:

[

12 0
0 1

] [

1 0
5 1

] [

1 0
0 35

3

] [

1 2
3

0 1

]

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

[

1 − 2
3

0 1

] [

1 0
0 3

35

] [

1 0
−5 1

] [ 1
12 0
0 1

] [

12 8
5 15

]

=
[

1 0
0 1

]

.

⟹

[

12 0
0 1

] [

1 0
5 1

] [

1 0
0 35

3

] [

1 2
3

0 1

]

=
[

12 8
5 15

]

.

(b)
[

3 24
4 7

]

(Answers may vary.)
Using the method we described, we first stretch along the 𝑥-axis by 1

3 :

[ 1
3 0
0 1

] [

3 24
4 7

]

=
[

1 8
4 7

]

.

We then shear along the 𝑦-axis by −4:

[

1 0
−4 1

] [ 1
3 0
0 1

] [

3 24
4 7

]

=
[

1 8
0 −25

]

.

137



We then stretch along the 𝑦-axis by − 1
25 :

[

1 0
0 − 1

25

] [

1 0
−4 1

] [ 1
3 0
0 1

] [

3 24
4 7

]

=
[

1 8
0 1

]

.

Finally, we shear by −8 along the 𝑥-axis:

[

1 −8
0 1

] [

1 0
0 − 1

25

] [

1 0
−4 1

] [ 1
3 0
0 1

] [

3 24
4 7

]

=
[

1 0
0 1

]

.

We undo the operations in turn:

[

3 0
0 1

] [

1 0
4 1

] [

1 0
0 −25

] [

1 8
0 1

]

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

[

1 −8
0 1

] [

1 0
0 − 1

25

] [

1 0
−4 1

] [ 1
3 0
0 1

] [

3 24
4 7

]

⟹

[

3 0
0 1

] [

1 0
4 1

] [

1 0
0 −25

] [

1 8
0 1

]

=
[

3 24
4 7

]

.

(c)
[

2 3
4 6

]

This matrix can’t be decomposed with our usual method! That’s because it lacks an inverse transformation,
since it’s projecting to a line (namely, the line 𝑦 = 2𝑥).

Let’s think a bit more laterally here. What of our operations take the whole plane to a line? Shears don’t,
rotations and reflections don’t, but stretches with a factor of 0 can. For example, we can take everything to
the 𝑥-axis with the matrix

[

1 0
0 0

]

.

Thus, we should be able to decompose our matrix as

𝐴
[

1 0
0 0

]

𝐵 =
[

2 3
4 6

]

for some matrices 𝐴,𝐵. If we want to take the 𝑥-axis to the line 𝑦 = 2𝑥, which is the job of matrix 𝐴
(remember, right to left!), we’ll need 𝐴 to be a shear by a factor of 2 along the 𝑦-axis. (See Figure 7.) Thus,

𝐴 =
[

1 0
2 1

]

.

𝑦

𝑥

𝐴

Figure 7: The shearing action of 𝐴 on the 𝑥-axis.
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To find 𝐵, we solve the matrix equation. We have
[

1 0
2 1

] [

1 0
0 0

]

𝐵 =
[

2 3
4 6

]

[

1 0
2 0

]

𝐵 =
[

2 3
4 6

]

.

Let 𝐵 =
[

𝑎 𝑏
𝑐 𝑑

]

.
[

1 0
2 0

] [

𝑎 𝑏
𝑐 𝑑

]

=
[

2 3
4 6

]

.

[

𝑎 𝑏
2𝑎 2𝑏

]

=
[

2 3
4 6

]

.

Interesting! 𝑐, 𝑑 can be any real numbers, because their effect is nullified by the mapping to a line. But
𝑎 = 2 and 𝑏 = 3. Let’s just choose 𝑐 = 0 and 𝑑 = 1 for simplicity of decomposition. We have

[

2 3
0 1

]

= 𝐵

[ 1
2 0
0 1

] [

2 3
0 1

]

=
[

1 3
2

0 1

]

[

1 − 3
2

0 1

] [ 1
2 0
0 1

] [

2 3
0 1

]

=
[

1 0
0 1

]

.

We undo the new matrices:

[

2 0
0 1

] [

1 3
2

0 1

] [

1 − 3
2

0 1

] [ 1
2 0
0 1

] [

2 3
0 1

]

=
[

1 0
0 1

]

⟹

[

2 0
0 1

] [

1 3
2

0 1

]

= 𝐵.

Thus, our full decomposition is

[

1 0
2 1

]

⏟⏞⏞⏟⏞⏞⏟
𝐴

[

1 0
0 0

] [

2 0
0 1

] [

1 3
2

0 1

]

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝐵

=
[

2 3
4 6

]

.

In words, this is a shear of 3
2 along the 𝑥-axis, followed by a stretch of a factor of 2 along the 𝑥-axis, a

stretch of a factor of 0 along the 𝑦-axis, and a shear of 2 along the 𝑦-axis.
As an aside, here’s what happens if you try using the usual method. We first stretch along the 𝑥-axis by

1
2 , then shear along the 𝑦-axis by −2:

[ 1
2 0
0 1

] [

2 3
4 6

]

=
[

1 3
2

2 3

]

.

[

1 0
−2 1

] [ 1
2 0
0 1

] [

2 3
4 6

]

=
[

1 3
2

0 0

]

.

Here, our problem arises. We cannot make the bottom-right corner 1.

19. One of the matrices in Problem 18 is a projection onto a line.

(a) Which matrix is it?

Problem (c):
[

2 3
4 6

]

is the matrix.

(b) What line does it project onto?
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It projects onto the line 𝑦 = 2𝑥.

(c) If you try to decompose this matrix to the identity matrix, what happens? Why?

You get stuck, because it lacks an inverse! The details are given as an aside at the end of that problem.

20. Onto what line does
[ 𝑎 𝑏
2𝑎 2𝑏

]

map the plane? Solve for 𝑎 and 𝑏 such that the matrix projects
perpendicular onto the line. Hint: The projection of a point already on the line should not move.
Choose a suitable point and solve a system of two equations with two unknowns.

Multiply this matrix by some vector (𝑥, 𝑦). We find that it is mapped onto
[

𝑎 𝑏
2𝑎 2𝑏

] [

𝑥
𝑦

]

=
[

𝑎𝑥 + 𝑏𝑦
2𝑎𝑥 + 2𝑏𝑦

]

,

which falls on the line 𝑦 = 2𝑥. To project perpendicular on the line, we do as the problem suggests.
Consider the point (1, 2), which is on the line. The image could generally be any point on the line, but if the
transformation is a projection, then the point should not move under the transformation. Thus,

[

𝑎 𝑏
2𝑎 2𝑏

] [

1
2

]

=
[

1
2

]

.

The left side expands out to
[

𝑎 + 2𝑏
2𝑎 + 4𝑏

]

. Thus, as long as 𝑎+2𝑏 = 1, the matrix will be a projection onto 𝑦 = 2𝑥.

A simple example is 𝑎 = 𝑏 = 1
3 , so a possible matrix is

[

1
3

1
3

2
3

2
3

]

.

21. Use Problem 20 to decompose
[ 2 3
4 6

]

into a projection to a line followed by a size change.

We see that this matrix is of the form 𝑀 =
[ 𝑎 𝑏
2𝑎 2𝑏

]

, but is not quite a projection since (𝑎, 𝑏) = (2, 3) and
𝑎 + 2𝑏 = 8 ≠ 1. If we scale the matrix by 1

8 , we then do get a projection. Thus, the decomposition is

[

2 3
4 6

]

=
[

8 0
0 8

]

[

1
4

3
8

1
2

3
4

]

,

where the second matrix is the projection and the first matrix is to scale it back up to our original.

22. Decompose
[ 1 2
3 6

]

into a projection perpendicular to a line followed by a size change.

This matrix maps onto the line 𝑦 = 3𝑥, since it’s of the form
[

𝑎 𝑏
3𝑎 3𝑏

]

, but is not a projection. We try a

similar method as the last problem to find the matrix of an actual projection, choosing the point (1, 3):
[

𝑎 𝑏
3𝑎 3𝑏

] [

1
3

]

=
[

1
3

]

[

𝑎 + 3𝑏
3𝑎 + 9𝑏

]

=
[

1
3

]

.

So 𝑎 + 3𝑏 = 1. We see that 1 + 3(2) = 7, so we scale down the matrix by a factor of 7, giving
[

1
7

2
7

3
7

6
7

]

,

so the decomposition is

[

7 0
0 7

]

[

1
7

2
7

3
7

6
7

]

.

23. Write matrices which project onto the following lines:
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(a) 𝑦 = 𝑥

The matrix will be of the form
[

𝑎 𝑏
𝑎 𝑏

]

. We choose the fixed point (1, 1):
[

𝑎 𝑏
𝑎 𝑏

] [

1
1

]

=
[

1
1

]

[

𝑎 + 𝑏
𝑎 + 𝑏

]

=
[

1
1

]

.

So 𝑎 + 𝑏 = 1. For simplicity, we choose 𝑎 = 𝑏 = 1
2 , giving the matrix

[

1
2

1
2

1
2

1
2

]

.

(b) 𝑦 = 5𝑥

The matrix will be of the form
[

𝑎 𝑏
5𝑎 5𝑏

]

. We choose the fixed point (1, 5):
[

𝑎 𝑏
5𝑎 5𝑏

] [

1
5

]

=
[

1
5

]

[

𝑎 + 5𝑏
5𝑎 + 25𝑏

]

=
[

1
5

]

.

So 𝑎 + 5𝑏 = 1. For simplicity, we choose 𝑎 = 𝑏 = 1
6 , giving the matrix

[

1
6

1
6

5
6

5
6

]

.

(c) 𝑦 = 𝑚𝑥

This is pretty easy to generalize. The matrix will be of the form
[

𝑎 𝑏
𝑚𝑎 𝑚𝑏

]

. We choose the fixed point

(1, 𝑚):
[

𝑎 𝑏
𝑚𝑎 𝑚𝑏

] [

1
𝑚

]

=
[

1
𝑚

]

[

𝑎 + 𝑚𝑏
𝑚𝑎 + 𝑚2𝑏

]

=
[

1
𝑚

]

.

So 𝑎 + 𝑚𝑏 = 1. For simplicity, we choose 𝑎 = 𝑏 = 1
𝑚+1 , giving the matrix

[

1
𝑚+1

1
𝑚+1𝑚

𝑚+1
𝑚

𝑚+1

]

.
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13 Inverses

1.

(a) With real numbers, one of the important purposes of division is that it lets you solve equa-
tions like 𝑎𝑥 = 𝑏 for 𝑥. Solve this by division (difficult!).

We divide both sides by 𝑎, to get 𝑥 = 𝑏
𝑎 .

(b) If division didn’t exist, you could still solve this equation by multiplication. The number
you’d multiply by is called the “multiplicative inverse” of 𝑎. What is the property that de-
fines this special number?

The property defining the number is that it is the unique number which, when multiplying by 𝑎, yields 1.
That is, if the number is 𝑐, then 𝑎𝑐 = 1.

(c) The multiplicative inverse of 𝑎 is often written 𝑎−1. Why does this notation make sense?

Since 𝑎 = 𝑎1, we have 𝑎−1𝑎1 = 𝑎1−1 = 𝑎0 = 1.

2.

(a) For fixed 𝑎, 𝑏, you might think that the equation 𝑎𝑥 = 𝑏 has only one solution, but sometimes
it can have zero or infinitely many. Give an example of both cases.

There are zero solutions if 𝑎 = 0 and 𝑏 ≠ 0, for example (𝑎, 𝑏) = (0, 1). There are infinite solutions if 𝑎 = 0
and 𝑏 = 0.

(b) How does the existence of a unique solution relate to the idea of multiplicative invertibility?

The unique solution can be found by multiplying both sides by 𝑎−1... if it exists. If it doesn’t exist, then
there isn’t a unique solution. In this case, 0 does not have a multiplicative inverse24, so it causes either no
solution or multiple solutions to exist.

(c) Are there any other possible numbers of solutions?

In this case, no. The easiest way is to simply construct all solutions for various values of 𝑎, 𝑏. We have
𝑥 = 𝑏

𝑎 for 𝑎 ≠ 0, which is only one solution, and the other two cases we’ve already described; they have either
an infinite number of solutions or no solutions.

3.

(a) Define “one-to-one” function.

A one-to-one function, also known as a bijection, is a function between two sets which maps each element
of each set to exactly one element of the other set, and vice versa.

(b) Is 𝑓 (𝑥) = 𝑎𝑥 a one-to-one function for all real 𝑎? (Hint: Look for the silly exception(s)!)

It is one-to-one for 𝑎 ≠ 0, but 𝑓 (𝑥) = 0𝑥 = 0 maps every real number to 0, which is certainly not a bijection;
the mapping is not unique.

4. Would your answers to the previous numbers change if you were talking about complex numbers
instead of just real numbers? Why or why not?

They would not change. 𝑓 (𝑥) = 𝑐𝑥 is still one-to-one for complex 𝑐, 𝑥, except for 𝑐 = 0. After all, the
inverse function is 𝑓−1(𝑥) = 1

𝑐 ⋅ 𝑥, and 1
𝑐 is defined for all 𝑐 ≠ 0.

5. In the following problems, 𝑥 can be any integer from 0 to 11.

(a) Find all solutions of 5𝑥 ≡ 7 in clock arithmetic.

24Unless you’re Brandon and trying to be annoying in Bio
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We see that we must solve 5𝑥 = 7 + 12𝑎 for integer solutions. While we could check 𝑎 values manually, a
simpler method is to notice that we just need to find 𝑎 so that 𝑥 = 7+12𝑎

5 is an integer. We have

7 + 12𝑎
5

= 1 +
2 + (10 + 2)𝑎

5
= 1 + 2𝑎 + 2 + 2𝑎

5
.

This is only an integer when 2 + 2𝑎 is divisible by 5, which first happens when 𝑎 = 4. This yields the
solution 11. Thus, 𝑥 = 11 is the only solution.

(b) Find all solutions of 2𝑥 ≡ 6 in clock arithmetic.

We want to solve 2𝑥 = 6 + 12𝑎 for integer solutions. Since 𝑥 is an integer for all integers 𝑎, we just need
𝑥 = 3 + 6𝑎. This gives 𝑥 = 3, 9.

(c) Find all solutions of 6𝑥 ≡ 6 in clock arithmetic.

We want to solve 6𝑥 = 6 + 12𝑎 for integer solutions. Again, 𝑥 is an integer for all integers 𝑎, so we just
need 𝑥 = 1 + 2𝑎. This yields 𝑥 = 1, 3, 5, 7, 9, 11.

(d) Find all solutions of 2𝑥 ≡ 7 in clock arithmetic.

This has no solutions, since 7 + 12𝑎 is never even for 𝑎 ∈ ℤ.

(e) For integers 𝑎, 𝑏, what are all possible numbers of solutions that 𝑎𝑥 ≡ 𝑏 can have in clock
arithmetic?

We could try every pair (𝑎, 𝑏), but that’s 144 combinations; no thanks.
We have 𝑎𝑥 = 𝑏 + 12𝑘 for some integer 𝑘. Solving for 𝑘 in terms of 𝑎, 𝑏, 𝑥, we find that 𝑘 = 𝑎𝑥−𝑏

12 . Thus, for
𝑥 taking on values 0 through 11, we must find how many such values have 𝑎𝑥 − 𝑏 divisible by 12.

We know that 0 values are possible; (𝑎, 𝑏) = (2, 7) is an example. Suppose, however, that we have a
solution, say 𝑥1, so that 𝑎𝑥1 − 𝑏 = 12𝑘1 for some value of 𝑘1. Let the other solutions be 𝑥1 + 𝑚 for some
integer 𝑚, so 𝑎(𝑥1 +𝑚) − 𝑏 = 12𝑘2. But the left side is 𝑎𝑥1 − 𝑏+ 𝑎𝑚, so 𝑎𝑚 must be divisible by 12. The values
of 𝑚 which make this true depend on gcd(𝑎, 12); we have

𝑚 = 12
gcd(𝑎, 12)

𝑛

for integers 𝑛. Thus, the solutions are

𝑥 = 𝑥1 +
12

gcd(𝑎, 12)
𝑛.

Note that 𝑛 can be any integer, not just among the positive integers. Since 0 ≤ 𝑥 ≤ 11, the number of
solutions is bounded. Substituting 𝑥 and subtracting 𝑥1 from all sides, we find that

−𝑥1 ≤
12

gcd(𝑎, 12)
𝑛 ≤ 11 − 𝑥1

In the twelve consecutive integers between −𝑥1 and 11 − 𝑥1 inclusive, there are always going to be
gcd(𝑎, 12) integers divisible by 12

gcd(𝑎,12) . The possible values of gcd(𝑎, 12) are 1, 2, 3, 4, 6, and 12; the divisors
of 12.

To recap: we know that 0 values are possible. If a solution for some pair (𝑎, 𝑏) exists, then there are
gcd(𝑎, 12) solutions for that pair in total. The possible numbers of solutions for 𝑥 are 0, 1, 2, 3, 4, 6, and 12.

6. How does the number of solutions to 𝑎𝑥 ≡ 𝑏 relate to the idea of multiplicative inverse? (Hint:
You can try solving for 𝑎 = 5, 7, 11 and 𝑏 = 1. What numbers would be 5−1, 7−1, 11−1 in clock
arithmetic?)

If we multiply both sides by the “inverse” of 𝑎, then we get 𝑥 ≡ 𝑏𝑎−1. This would give us a quick way to
solve for 𝑥. The question is whether such an “inverse” exists.

Well, this equation 𝑥 ≡ 𝑏𝑎−1 is only valid if there is a single solution for 𝑥; otherwise, since 0 ≤ 𝑥 ≤ 11,
this wouldn’t encapsulate all the possible values of 𝑥. Thus, gcd(𝑎, 12) = 1. This is true for all the 𝑎 values in
the hint.

We can find 5−1, 7−1, and 11−1 by just trying numbers.25 For example, 5−1 is just the solution to the
equation 5𝑎 ≡ 1, which is clearly 5, since 25 = 2 ⋅ 12 + 1. 7−1 is 7, since 7 ⋅ 7 ≡ 1. Finally, 11−1 is 11, since
11 ⋅ 11 ≡ 1. Interesting!

25There is a better way to do this, called the Extended Euclidean Algorithm. Check it out if you’re bored!
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7. How does this all relate to groups?

(a) The clock numbers are a group under clock addition. Name that group!

The group is the cyclic group of order 12.

(b) They are not a group under clock multiplication. Why?

1 can’t be the identity element, because there’s no element 𝑥 such that 0 ⋅ 𝑥 = 1. Without an identity
element, it can’t be a group.

(c) A subset of four of the clock numbers form a group under the operation of clock multipli-
cation. Find them, and write a group table.

It’s not immediately obvious how we’d find this subset besides trying various pairs of elements and seeing
what they generate. If we remember the invertibility property, however, we realize that all elements of this
group must be coprime (i.e. not share any factors besides 1 with) 12. The only four elements which satisfy
this requirement are 1, 5, 7, and 11; notice how we’ve already seen three of these elements.

We can now write a group table to expose the structure of the group:

⋅ 1 5 7 11
1 1 5 7 11
5 5 1 11 7
7 7 11 1 5
11 11 7 5 1

(d) Describe this group. What is the inverse of each element?

Every element’s inverse is itself. The group is commutative (abelian); however it is not the cyclic group of
order 4.

(e) What symmetry group is it isomorphic to?

It is isomorphic to the symmetry group of the rectangle: the dihedral group of order 4, or 𝐷2.26

8. If the numbers on an advanced Mars clock went from 0 to 4,

(a) They would form a group under addition. Make a group table!

⋅ 0 1 2 3 4
0 0 1 2 3 4
1 1 2 3 4 0
2 2 3 4 0 1
3 3 4 0 1 2
4 4 0 1 2 3

(b) What group is this isomorphic to?

This is isomorphic to the cyclic group of order 5.

(c) A subset of four of these numbers forms a group under multiplication. Find them and write
a group table.

Analogous to the original clock, which was modulo 12, the numbers which form the group under multipli-
cation must be coprime to 5. But since 5 is a prime, this is just {1, 2, 3, 4}.

⋅ 1 2 3 4
1 1 2 3 4
2 2 4 1 3
3 3 1 4 2
4 4 3 2 1

26This group is also sometimes known as the Klein four-group, denoted 𝑉 or 𝐾4.
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(d) Describe this multiplication group.

The group has order 4. It is commutative, and cyclic, with each element generated by a single element.

(e) What symmetry group is it isomorphic to?

Based on the above properties, this is isomorphic to the rotation group of the square: the cyclic group of
order 4, 𝐶4.

9.

(a) Find all solutions (𝑥, 𝑦) of
[

1 2
3 4

] [

𝑥
𝑦

]

=
[

5
6

]

, by multiplying out the left side and

rewriting this as a system of equations.

The left side multiplied out is
[

𝑥 + 2𝑦
3𝑥 + 4𝑦

]

. Thus, we have the system of equations
{

𝑥 + 2𝑦 = 5
3𝑥 + 4𝑦 = 6

.

There are a couple ways to solve this. Perhaps the easiest way is to double the first equation and subtract
it from the second equation:

3𝑥 + 4𝑦 = 6
−2 ⋅ (𝑥 + 2𝑦 = 5)

𝑥 = −4

If 𝑥 = −4, then −4 + 2𝑦 = 5, so 𝑦 = 9
2 . We can verify our solution by multiplying out the original matrix

form with the substitution (𝑥, 𝑦) =
(

4, 92
)

.

(b) Find all solutions (𝑥, 𝑦) of
[

1 2
2 4

] [

𝑥
𝑦

]

=
[

5
6

]

Multiplying out the left side and comparing corresponding parts, we get the following system of equations:
{

𝑥 + 2𝑦 = 5
2𝑥 + 4𝑦 = 6

.

Multiplying the top equation by 2 and subtracting it from the bottom equation, we get the following system
of equations:

2𝑥 + 4𝑦 = 6
−2 ⋅ (𝑥 + 2𝑦 = 5)

0 = −4

This is a contradiction, so there are no solutions (𝑥, 𝑦) to this equation.

(c) Find all solutions (𝑥, 𝑦) of
[

1 2
2 4

] [

𝑥
𝑦

]

=
[

5
10

]

Multiplying out the left side and comparing corresponding parts, we get the following system of equations:
{

𝑥 + 2𝑦 = 5
2𝑥 + 4𝑦 = 10

.

Multiplying the top equation by 2 and subtracting it from the bottom equation, we get the following system
of equations:

2𝑥 + 4𝑦 = 10
−2 ⋅ (𝑥 + 2𝑦 = 5)

0 = 0

145



This is always true. This seems to imply that the original equation is true for all (𝑥, 𝑦), but this is not the
case. Solving for 𝑥 in terms of 𝑦 for each of the equations, we get 𝑥 = 5 − 2𝑦 for each. Also, if 𝑥 = 5 − 2𝑦,
then both equations are true. Thus, 𝑥 = 5− 2𝑦 is both a necessary and sufficient condition for the equation to
be true.

In any case, this yields an infinite number of solutions.

(d) What are all possible numbers of solutions that 𝐴𝑋 = 𝐵 can have, where 𝐴,𝐵 are 2× 2 and
2×1 matrices respectively and 𝑋 =

[ 𝑥
𝑦
]

? Use your knowledge of the properties of systems
of equations.

Letting 𝐴 =
[

𝑎 𝑏
𝑐 𝑑

]

and 𝐵 =
[

𝑓
𝑔

]

, we get the system of equations
{

𝑎𝑥 + 𝑏𝑦 = 𝑓
𝑐𝑥 + 𝑑𝑦 = 𝑔

.

With our knowledge of system of equations, we know that this can have 0, 1, or infinite solutions, depending
on 𝑎, 𝑏, 𝑐, 𝑑, 𝑓 , 𝑔.

10. Now, let’s relate the two 2 × 2 matrices from the previous problem to the transformations we
know.

(a) Contrast the mapping properties of
[

1 2
3 4

]

and
[

1 2
2 4

]

.

[

1 2
2 4

]

projects to a line, and is thus not invertible, while
[

1 2
3 4

]

does not project to a line and is thus

invertible.

(b) Find the determinants of these matrices. What do you notice?

We have det
[

1 2
3 4

]

= −1 and det
[

1 2
2 4

]

= 0. The matrix which maps to a line has 0 determinant,

which is hardly a coincidence; since the (absolute value of the) determinant is the area of the unit square after
the mapping, this makes sense. The unit square is mapped to a line segment, which has 0 area.

(c) When is 𝑓 (𝑋) = 𝐴𝑋 a one-to-one function? That is, in mapping the plane, when does each
point in the image have exactly one preimage?

𝑓 (𝑋) = 𝐴𝑋 is a one-to-one function when 𝐴 has nonzero determinant. We’ll see how to prove this shortly,
but it makes sense that a matrix with zero determinant, being a mapping to a line, is not one-to-one.

(d) Compare how you find the number of solutions of the real number equation 𝑎𝑥 = 𝑏 with
how you find the number of solutions of the matrix equation 𝐴𝑋 = 𝐵.

For 𝑎𝑥 = 𝑏, we have three cases:

# solutions =

⎧

⎪

⎨

⎪

⎩

∞ (𝑎, 𝑏) = (0, 0)
0 𝑎 = 0, 𝑏 ≠ 0
1 otherwise

.

For 𝐴𝑋 = 𝐵, we have three cases27:

# solutions =

⎧

⎪

⎨

⎪

⎩

∞ det 𝐴 = 0, 𝐵 is on the line 𝐴 maps to
1 det 𝐴 = 0, 𝐵 is not on the line 𝐴 maps to
1 otherwise

.

Thus, the condition that det 𝐴 = 0 is analogous to 𝑎 = 0, and the condition that 𝐵 is on the line 𝐴 projects
to is analogous to 𝑏 = 0.

27There is technically a “fourth case,” when 𝐴 is the matrix of all 0s, where there are infinite solutions if and only if 𝐵 =
[ 0
0
]

, but I have
kept it out of the main solution for simplicity. This is a “fourth case” because 𝐴 no longer projects to a line.
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11. Let 𝐾 =
[

5 7
8 −3

]

.

(a) Find all solutions to 𝐾
[

𝑥
𝑦

]

=
[

10
2

]

.

Expanding out the left side and comparing corresponding entries, we get the system of equations
{

5𝑥 + 7𝑦 = 10
8𝑥 − 3𝑦 = 2

.

This is a bit unpleasant to solve, but we can multiply the first equation by 8
5 and subtract the second

equation:

8
5 ⋅ (5𝑥 + 7𝑦 = 10)

8𝑥 − 3𝑦 = 2
71
5 𝑦 = 14

Thus, 𝑦 = 5
71 ⋅ 14 = 70

71 . We can get 𝑥 by substituting 𝑦 back into either equation. Choosing the second
equation, we get

8𝑥 − 3
(70
71

)

= 10

𝑥 =
10 + 210

71
8

= 44
71

.

Thus, (𝑥, 𝑦) =
(

44
71 ,

70
71

)

.

(b) If we knew a matrix which was the inverse of 𝐾 , written 𝐾−1, we could write the following
equation:

𝐾−1𝐾
[

𝑥
𝑦

]

= 𝐾−1
[

5
10

]

.

What would the left side reduce to?

The left side would reduce to 𝐼
[

𝑥
𝑦

]

=
[

𝑥
𝑦

]

, since by definition 𝐾−1𝐾 = 𝐼 .

12. Consider the following matrix inverses:

[

3 4
2 −5

]−1
=

[

5
23 − 4

23
2
23

3
23

]

[

1 0
0 −1

]−1
=
[

1 0
0 −1

]

[

3 1
2 4

]−1
= 1

10

[

4 −1
−2 3

]

[

1 2
3 4

]

=
[

−2 1
3 −1

]

(a) Look for a pattern in these inverses.

It appears that they are some fraction of a matrix with the top-left and bottom-right entries swapped, and
the bottom-left and top-right entries negated. With some closer inspection, the fraction appears to be 1

det𝑀 .

(b) Describe the inverse of an arbitrary matrix:
[

𝑎 𝑐
𝑏 𝑑

]−1
= 1

[ ]

. Use the word

determinant in your answer.
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The inverse of an arbitrary matrix
[

𝑎 𝑐
𝑏 𝑑

]

is

1
𝑎𝑑 − 𝑏𝑐

[

𝑑 −𝑐
−𝑏 𝑎

]

.

In words, we swap the top-left and bottom-right entries, then negate the other two entries, and divide by
the determinant of the matrix.

(c) We’ve been writing the inverse of matrix 𝐴 as 𝐴−1. Why does this notation make sense?

This makes sense because 𝐴𝐴−1 = 𝐼 , and 𝐼 is analogous to 1 in 𝑎𝑎−1 = 1 in that multiplying by it does
nothing.

13. Now, see what happens when you multiply the following matrices:

(a) − 1
2

[

2 3
4 5

] [

5 −3
−4 2

]

−1
2

[

2 ⋅ 5 + 3 ⋅ −4 2 ⋅ −3 + 3 ⋅ 2
4 ⋅ 5 + 5 ⋅ −4 4 ⋅ −3 + 5 ⋅ 2

]

= −1
2

[

−2 0
0 −2

]

=
[

1 0
0 1

]

.

(b) 1
71

[

5 7
8 −3

] [

3 7
8 −5

]

1
71

[

5 ⋅ 3 + 7 ⋅ 8 5 ⋅ 7 + 7 ⋅ −5
8 ⋅ 3 − 3 ⋅ 8 8 ⋅ 7 + −3 ⋅ −5

]

= 1
71

[

71 0
0 71

]

=
[

1 0
0 1

]

.

(c)
[

𝑎 𝑐
𝑏 𝑑

]

1
𝑎𝑑−𝑏𝑐

[

𝑑 −𝑐
−𝑏 𝑎

]

1
𝑎𝑑 − 𝑏𝑐

[

𝑎𝑑 − 𝑐𝑏 −𝑎𝑐 + 𝑐𝑎
𝑏𝑑 − 𝑑𝑏 −𝑐𝑏 + 𝑎𝑑

]

=
[

1 0
0 1

]

.

(d) 1
𝑎𝑑−𝑏𝑐

[

𝑑 −𝑐
−𝑏 𝑎

] [

𝑎 𝑐
𝑏 𝑑

]

1
𝑎𝑑 − 𝑏𝑐

[

𝑑𝑎 − 𝑐𝑏 𝑑𝑐 − 𝑐𝑑
−𝑏𝑎 + 𝑎𝑏 −𝑏𝑐 + 𝑎𝑑

]

=
[

1 0
0 1

]

.

14. For another approach to finding the inverse of a matrix, solve the following for 𝑤, 𝑥, 𝑦, 𝑧 in terms
of 𝑎, 𝑏, 𝑐, 𝑑 by converting the matrix equations into a set of four linear equations:

[

𝑤 𝑦
𝑥 𝑧

] [

𝑎 𝑐
𝑏 𝑑

]

=
[

1 0
0 1

]

.

The left side is
[

𝑤𝑎 + 𝑦𝑏 𝑤𝑐 + 𝑦𝑑
𝑥𝑎 + 𝑧𝑏 𝑥𝑐 + 𝑧𝑑

]

. This yields the system of equations

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝑤𝑎 + 𝑦𝑏 = 1
𝑤𝑐 + 𝑦𝑑 = 0
𝑥𝑎 + 𝑧𝑏 = 0
𝑥𝑐 + 𝑧𝑑 = 1

.

This does not look pleasant. No factors are shared at all.
From the second equation, we see that 𝑤 = − 𝑦𝑑

𝑐 . Substituting into the first equation, we get
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(

−
𝑦𝑑
𝑐

)

𝑎 + 𝑦𝑏 = 1

𝑦
(−𝑎𝑑 + 𝑏𝑐

𝑐

)

= 1

𝑦 = 𝑐
−𝑎𝑑 + 𝑏𝑐

𝑦 = − 𝑐
𝑎𝑑 − 𝑏𝑐

.

Progress! We substitute this into our expression for 𝑤:

𝑤 = −
𝑦𝑑
𝑐

= −
− 𝑐

𝑎𝑑−𝑏𝑐 ⋅ 𝑑

𝑐
= 𝑑

𝑎𝑑 − 𝑏𝑐
.

We can apply the same logic to the latter two equations. From the third equation, we see that 𝑥 = − 𝑧𝑏
𝑎 .

Substituting this into the fourth equation, we get

(

−𝑧𝑏
𝑎

)

𝑐 + 𝑧𝑑 = 1

𝑧
(𝑎𝑑 − 𝑏𝑐

𝑎

)

= 1

𝑧 = 𝑎
𝑎𝑑 − 𝑏𝑐

.

We substituting this back into our expression for 𝑥:

𝑥 = −
𝑎

𝑎𝑑−𝑏𝑐 ⋅ 𝑏

𝑎
= − 𝑏

𝑎𝑑 − 𝑏𝑐
.

Overall we get the following answer for the inverse matrix:

[

𝑤 𝑦
𝑥 𝑧

]

=

[

𝑑
𝑎𝑑−𝑏𝑐 − 𝑐

𝑎𝑑−𝑏𝑐
− 𝑏

𝑎𝑑−𝑏𝑐
𝑎

𝑎𝑑−𝑏𝑐

]

= 1
𝑎𝑑 − 𝑏𝑐

[

𝑑 −𝑐
−𝑏 𝑎

]

.

This agrees with our previous observations.

15. Rewrite each system of equations in matrix form. Use your calculator to calculate a matrix
inverse, solve the system, and finally, check your answer. Remember to make clear in your work
when you have used a calculator.

(a)

{

2𝑥 + 3𝑦 = 5
4𝑥 + 5𝑦 = 7

In matrix form:
[

2 3
4 5

] [

𝑥
𝑦

]

=
[

5
7

]

.

We left-multiply both sides by the inverse of
[

2 3
4 5

]

, which WolframAlpha informs us is

[

𝑥
𝑦

]

=
[

2 3
4 5

]−1 [5
7

]

=
[

−2
3

]

.

Thus, (𝑥, 𝑦) = (−2, 3).

(b)

{

37𝑥 + 12𝑦 = 65
93𝑥 + 40𝑦 = 156
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[

37 12
93 40

] [

𝑥
𝑦

]

=
[

65
156

]

.

We left-multiply both sides by the inverse of
[

37 12
93 40

]

, which WolframAlpha informs us is

[

37 12
93 40

]−1 [ 65
156

]

=
[

2
− 3

4

]

.

Thus, (𝑥, 𝑦) =
(

2,− 3
4

)

.

(c)

⎧

⎪

⎨

⎪

⎩

2𝑥 + 5𝑦 + 3𝑧 = 5
3𝑥 + 2𝑦 + 4𝑧 = 7
13𝑥 + 16𝑦 + 18𝑧 = 4

⎡

⎢

⎢

⎣

2 5 3
3 2 4
13 16 18

⎤

⎥

⎥

⎦

⎡

⎢

⎢

⎣

𝑥
𝑦
𝑧

⎤

⎥

⎥

⎦

=
⎡

⎢

⎢

⎣

5
7
4

⎤

⎥

⎥

⎦

.

We left-multiply both sides by the inverse of the 3 × 3 matrix, which WolframAlpha informs us... doesn’t
exist.

But are there infinite solutions or no solutions for (𝑥, 𝑦, 𝑧)? Well, we can try to derive a contradiction with
the equations we have, though that’s kind of ugly. Subtracting 8 times the second equation from the third
equation, we get

13𝑥 + 16𝑦 + 18𝑧 = 4
−8(3𝑥 + 2𝑦 + 4𝑧 = 7)
−11𝑥 + 14𝑧 = −52. (1)

We can do this with several combinations:

2(3𝑥 + 2𝑦 + 4𝑧 = 7)
−3(2𝑥 + 5𝑦 + 3𝑧 = 5)
−11𝑦 − 𝑧 = −1; (2)

6(2𝑥 + 5𝑦 + 3𝑧 = 5)
−(13𝑥 + 16𝑦 + 18𝑧 = 4)
𝑥 + 14𝑦 = 26. (3)

There seem to be some shared numbers cropping up. We multiply Equation (2) by 14 and add it to 11
times Equation (3):

14(−11𝑦 − 𝑧 = −1)
11(𝑥 + 14𝑦 = 26)
−14𝑧 + 11𝑥 = 272
−11𝑥 + 14𝑧 = −272.

Combining this with our first equation, we get −52 = −272, a contradiction. Thus, there are no solutions
to this system of equations.

As an aside, there’s a significantly nicer way to check whether there’s no or infinite solutions using reduced
row-echelon form, which is a function called rref on your calculator. Basically, apply rref to the matrix

𝑀 =
⎡

⎢

⎢

⎣

2 5 3 5
3 2 4 7
13 16 18 4

⎤

⎥

⎥

⎦

,

and if the last row is [0 0 0 𝑥] where 𝑥 ≠ 0, there is no solution. Otherwise, there are infinite solutions.
In this case,

rref(𝑀) =

⎡

⎢

⎢

⎢

⎣

1 0 14
11 0

0 1 1
11 0

0 0 0 1

⎤

⎥

⎥

⎥

⎦

,
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so 𝑥 = 1 and there are no solutions. As for what rref really is... Wikipedia is your friend!

(d)

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝑤 + 2𝑥 + 3𝑦 + 4𝑧 = 7
3𝑤 − 𝑥 − 2𝑦 − 5𝑧 = 5
5𝑤 + 3𝑥 − 𝑦 − 4𝑧 = 3
7𝑤 + 9𝑥 + 5𝑦 − 2𝑧 = 2

In matrix form:

⎡

⎢

⎢

⎢

⎣

1 2 3 4
3 −1 −2 −5
5 3 −1 −4
7 9 5 −2

⎤

⎥

⎥

⎥

⎦

⎡

⎢

⎢

⎢

⎣

𝑤
𝑥
𝑦
𝑧

⎤

⎥

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎣

7
5
3
2

⎤

⎥

⎥

⎥

⎦

.

Left-multiplying by the inverse of the 4 × 4 matrix gives, according to WolframAlpha:

⎡

⎢

⎢

⎢

⎣

𝑤
𝑥
𝑦
𝑧

⎤

⎥

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎣

1 2 3 4
3 −1 −2 −5
5 3 −1 −4
7 9 5 −2

⎤

⎥

⎥

⎥

⎦

−1
⎡

⎢

⎢

⎢

⎣

7
5
3
2

⎤

⎥

⎥

⎥

⎦

= 1
226

⎡

⎢

⎢

⎢

⎣

871
−696
−257
333

⎤

⎥

⎥

⎥

⎦

.

Disgusting! So the solution is (𝑤, 𝑥, 𝑦, 𝑧) =
(

871
226 ,

−696
226 , −257226 , 333226

)

.

(e)

⎧

⎪

⎨

⎪

⎩

2𝑥 + 5𝑦 + 2𝑧 = 1
3𝑥 + 2𝑦 + 4𝑧 = 1
13𝑥 + 16𝑦 + 18𝑧 = 5

This looks rather similar to two problems ago, but the coefficients are slightly different. Indeed, such a
small change can permit an inverse.

In matrix form:

⎡

⎢

⎢

⎣

2 5 2
3 2 4
13 16 18

⎤

⎥

⎥

⎦

⎡

⎢

⎢

⎣

𝑥
𝑦
𝑧

⎤

⎥

⎥

⎦

=
⎡

⎢

⎢

⎣

1
1
5

⎤

⎥

⎥

⎦

.

Left-multiplying by the inverse of the 3 × 3 matrix with WolframAlpha gives

⎡

⎢

⎢

⎣

𝑥
𝑦
𝑧

⎤

⎥

⎥

⎦

=
⎡

⎢

⎢

⎣

2 5 2
3 2 4
13 16 18

⎤

⎥

⎥

⎦

−1
⎡

⎢

⎢

⎣

1
1
5

⎤

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎣

3
11
1
11
0

⎤

⎥

⎥

⎥

⎦

.

Thus, (𝑥, 𝑦, 𝑧) =
(

3
11 ,

1
11 , 0

)

.

(f) When can you use matrix inverses to solve a system of equations?

You can use matrix inverses when the system is a system of 𝑛 linear equations in 𝑛 variables, as such a
system always be rearranged to what we have dealt with in the past few problems. Furthermore, they will find
the solution if it exists, but if there are zero or infinite solutions, it cannot differentiate between the two cases.

16. You can fit a polynomial to any set of points in the plane, so long as the points pass the Vertical
Line Test.

(a) What is the least degree polynomial through

i. One point?

A polynomial of degree 0 can pass through a point. After all, if the point is (𝑎, 𝑏), then the polynomial 𝑦 = 𝑏
passes through the point.
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ii. Two points?

A polynomial of degree 1 (i.e. a line) can pass through two points.

iii. Three points?

A polynomial of degree 2 (i.e. a quadratic) can pass through three points.

iv. 𝑛 points?

A polynomial of degree 𝑛 − 1 can pass through 𝑛 points. The easiest way to see this is to suppose we
have points (𝑥1, 𝑦1),⋯ , (𝑥𝑛, 𝑦𝑛) and a general degree 𝑛 − 1 polynomial

𝑃 (𝑥) = 𝑎𝑛−1𝑥
𝑛−1 + 𝑎𝑛−2𝑥

𝑛−2 +⋯ + 𝑎1𝑥 + 𝑎0.

Then the polynomial passing through the points (𝑥𝑖, 𝑦𝑖) is equivalent to the system of equations

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝑎𝑛−1𝑥
𝑛−1
1 + 𝑎𝑛−2𝑥

𝑛−2
1 +⋯ + 𝑎1𝑥1 + 𝑎0 = 𝑦1

𝑎𝑛−1𝑥
𝑛−1
2 + 𝑎𝑛−2𝑥

𝑛−2
2 +⋯ + 𝑎1𝑥2 + 𝑎0 = 𝑦2

⋮ ⋮

𝑎𝑛−1𝑥
𝑛−1
𝑛 + 𝑎𝑛−2𝑥

𝑛−2
𝑛 +⋯ + 𝑎1𝑥𝑛 + 𝑎0 = 𝑦𝑛

.

We can express this as the matrix equation

⎡

⎢

⎢

⎢

⎣

𝑥𝑛−11 𝑥𝑛−21 ⋯ 𝑥1 1
𝑥𝑛−12 𝑥𝑛−22 ⋯ 𝑥2 1
⋮ ⋮ ⋱ ⋮ ⋮

𝑥𝑛−1𝑛 𝑥𝑛−2𝑛 ⋯ 𝑥𝑛 1

⎤

⎥

⎥

⎥

⎦

⎡

⎢

⎢

⎢

⎣

𝑎𝑛−1
𝑎𝑛−2
⋮
𝑎0

⎤

⎥

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎣

𝑦1
𝑦2
⋮
𝑦𝑛

⎤

⎥

⎥

⎥

⎦

.

Note that the matrices here are 𝑛×𝑛 and 𝑛×1. We can solve this as usual by left-multiplying by the inverse
of the big square matrix, which provides a solution for (𝑎𝑛−1, 𝑎𝑛−2,⋯ , 𝑎0), and thus a polynomial satisfying the
requirements.

For the interested: we actually have to prove that the big square matrix 𝑀 is invertible. Thus, we need to
show that det𝑀 ≠ 0. This is the kind of thing that more advanced linear algebra is useful for, but it turns out
that the determinant of 𝑀 is

det𝑀 =
𝑛−1
∏

𝑖=1

𝑛
∏

𝑗=𝑖+1
(𝑥𝑗 − 𝑥𝑖).

This may look terrifying, but this means we take the product of (𝑥𝑗 − 𝑥𝑖) for indices 1 ≤ 𝑖 < 𝑗 ≤ 𝑛. That is,
we take the product of that expression for all (𝑖, 𝑗) pairs where 𝑗 is strictly greater than 𝑖. The proof of this is
beyond the scope of this book.

Recalling the zero product property, that expression for det𝑀 is 0 if and only if one of the products is 0.
Thus, it’s 0 if and only if 𝑥𝑗 = 𝑥𝑖 for some 𝑖 < 𝑗. This makes sense! If there are two (or more) points with the
same 𝑥 coordinate, then the determinant is 0, and the matrix is not invertible. If all 𝑥 coordinates are unique,
however, then the determinant is nonzero, and the inverse and solution exist.

𝑀 is a special type of matrix known as a Vandermonde matrix.

(b) Find a polynomial of least degree that passes through (0, 3), (1, 5), (2,−3), (3, 4), and (4, 7).

We apply our findings from the previous problem, setting 𝑛 = 5, (𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5) = (0, 1, 2, 3, 4) and
(𝑦1, 𝑦2, 𝑦3, 𝑦4, 𝑦5) = (3, 5,−3, 4, 7). The matrix equation is

⎡

⎢

⎢

⎢

⎢

⎢

⎣

04 03 02 0 1
14 13 12 1 1
24 23 22 2 1
34 33 32 3 1
44 43 42 4 1

⎤

⎥

⎥

⎥

⎥

⎥

⎦

⎡

⎢

⎢

⎢

⎢

⎣

𝑎4
𝑎3
𝑎2
𝑎1
𝑎0

⎤

⎥

⎥

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎢

⎣

3
5
−3
4
7

⎤

⎥

⎥

⎥

⎥

⎦
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⟹

⎡

⎢

⎢

⎢

⎢

⎣

𝑎4
𝑎3
𝑎2
𝑎1
𝑎0

⎤

⎥

⎥

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎢

⎣

0 0 0 0 1
1 1 1 1 1
16 8 4 2 1
81 27 9 3 1
256 64 16 4 1

⎤

⎥

⎥

⎥

⎥

⎦

−1
⎡

⎢

⎢

⎢

⎢

⎣

3
5
−3
4
7

⎤

⎥

⎥

⎥

⎥

⎦

WolframAlpha
= = 1

6

⎡

⎢

⎢

⎢

⎢

⎣

−11
91

−226
158
18

⎤

⎥

⎥

⎥

⎥

⎦

.

Terrifeunt! Thus, the polynomial is

𝑦 = −11
6
𝑥4 + 91

6
𝑥3 − 226

6
𝑥2 + 158

6
𝑥 + 18

6

𝑦 = −11
6
𝑥4 + 91

6
𝑥3 − 113

3
𝑥2 + 79

3
𝑥 + 3.
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14 Multiplication Modulo 𝑚 Meets Groups

1. Clearly some of these numbers cannot be elements of a group. For instance, in both cases, 0
cannot be used, since it prevents the existence of an inverse. In the case of mod 4, 2 cannot be
used either. Why not?

2 can’t be used because it lacks an inverse. After all, there is no integer 𝑥 such that 2𝑥 ≡ 1(mod 4).

2. How could we have known that these numbers would not work in advance?

They share a common factor with the modulus 𝑚; we must have gcd(𝑥, 𝑚) = 1 where 𝑥 is the element of
the group.

3. Euler’s totient function 𝜑(𝑚) tells us how many numbers are relatively prime to a given number
𝑚. That is, 𝜑(𝑚) is the count of numbers 𝑛 such that gcd(𝑚, 𝑛) = 1. What does the maximum size
of a group under multiplication mod 𝑚 have to do with this function?

The size of the largest group under multiplication modulo 𝑚 is 𝜑(𝑚), since that’s the group of numbers
which have inverses modulo 𝑚. The other group properties are satisfied; associativity because multiplication
is associative, closure because the product of two numbers coprime to 𝑚 is also coprime to 𝑚, and identity,
since 1 is always (considered) coprime to 𝑚.

4. We will write tables for the largest possible groups under multiplication mod 5 and mod 8.

(a) Make a prediction as to how many elements will be in each group.

(Answers may vary.)
Since 5 is prime, there should be 4 elements in its group since 𝜑(𝑝) with 𝑝 prime is 𝑝 − 1. For 8, the

elements should be 1, 3, 5, 7: the odd numbers, or 4 elements.

(b) Which numbers can you eliminate from consideration?

We can eliminate numbers that are coprime to the modulus. For 5, this is {0}. For 8, this is {0, 2, 4, 6}.

(c) Do you think that the groups will be isomorphic to those of multiplication mod 3 and mod
4, or to each other?

(Answers may vary.)
The group mod 5, since 5 is prime, should just be the cyclic group of order 4. 8 is harder to predict; it turns

out to be a different group of order 4. Since multiplication groups mod 3, 4 have order 2, it can’t be isomorphic
to these.

(d) Find the period of each element in the groups and write their orbits: the list of its powers
until it reaches the identity.

mod 5:
Element Orbit Period

1 1, (1) 1
2 2, 4, 3, 1, (2) 4
3 3, 4, 2, 1, (3) 4
4 4, 1, (4) 2

mod 8:

Element Orbit Period
1 1, (1) 1
3 3, 1, (3) 3
5 5, 1, (5) 5
7 7, 1, (7) 7

(e) Make the tables, and analyze them to confirm/correct your predictions.

The multiplicative group of integers mod 5 is indeed the cyclic group of order 4, since there are elements
of periods 1, 2, and 4. If we want to write a correspondence, let the cyclic group of order 4 be {𝐼, 𝑟, 𝑟2, 𝑟3}
under multiplication. Then 1 ↔ 𝐼 , 2 ↔ 𝑟, 3 ↔ 𝑟3, 4 ↔ 𝑟2.

The multiplicative group of integers mod 8 is the dihedral group of order 4, or 𝐷2.

(f) Are there any subgroups?

Yes; {1, 4} is a subgroup of the mod 5 multiplicative group, and {1, 3}, {1, 5}, {1, 7} are subgroups of the
mod 8 multiplicative group. {1} is a subgroup of both groups.
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5. Now use a program to find the largest possible group under multiplication mod 14.

Here’s my Python code for this, compressed to fit:

#!/usr/bin/env python
from fractions import gcd

# run in a terminal as python -i mod_m_find.py,
# so you can interact with it as a REPL

modulus = 10
group_elements = []
for i in xrange(1, modulus):

if gcd(i, modulus) == 1:
group_elements.append(i)

def pretty_print_elements():
print(pp_list(group_elements))

def pp_list(arr):
return ", ".join(map(lambda s: "$%s$" % s, arr))

def make_orbit_table(sort_by_orbit=True):
print("\\begin{tabular}{c|l|c}\nElement & Orbit & Period \\\\ \\hline")
orbits = []
for elem in group_elements:

x = elem
orbit = []
while True:

orbit.append(str(x))
x *= elem
x %= modulus

if x == elem:
orbit.append("(%s)" % elem)
break

orbits.append(orbit)
if sort_by_orbit:

orbits.sort(key=len)
for orbiit in orbits:

print("$%s$ & %s & $%s$ \\\\" % (orbiit[0], pp_list(orbiit), len(orbiit) - 1))
print("\\end{tabular}")

def create_group_table(sort_by=None):
if not sort_by:

group_elements.sort()
else:

group_elements.sort(key=sort_by)
hline = "\\hline"
print("\\begin{array}{c|%s}" % ("c|" * len(group_elements)))
print("\\cdot & " + " & ".join(map(str, group_elements)) + " \\\\ " + hline)
for i in group_elements:

row = "%s" % i
for j in group_elements:

row += " & %s" % ((i * j) % modulus)
row += " \\\\ " + hline
print(row)

print("\\end{array}")

You can find this code at https://github.com/anematode/gatm/blob/master/accessories/scripts/mod_m_find.py.

(a) What are its elements?

Timothys-Pro:gatm timoothy$ python -i accessories/scripts/mod_m_find.py
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>>> pretty_print_elements()
$1$, $3$, $7$, $9$

My program is customized for LATEX of course, since that’s what I’m writing this text in. But the elements
are {1, 3, 7, 9}.

(b) Make a table of the group’s orbits.

>>> make_orbit_table(False)
\begin{tabular}{c|l|c}
Element & Orbit & Period \\
$1$ & $1$, $(1)$ & $1$ \\
$3$ & $3$, $9$, $7$, $1$, $(3)$ & $4$ \\
$7$ & $7$, $9$, $3$, $1$, $(7)$ & $4$ \\
$9$ & $9$, $1$, $(9)$ & $2$ \\
\end{tabular}

This renders to the following table of orbits.
Element Orbit Period

1 1, (1) 1
3 3, 9, 7, 1, (3) 4
7 7, 9, 3, 1, (7) 4
9 9, 1, (9) 2

(c) Make a group table.

>>> create_group_table()
\begin{array}{c|c|c|c|c|}
\cdot & 1 & 3 & 7 & 9 \\ \hline
1 & 1 & 3 & 7 & 9 \\ \hline
3 & 3 & 9 & 1 & 7 \\ \hline
7 & 7 & 1 & 9 & 3 \\ \hline
9 & 9 & 7 & 3 & 1 \\ \hline
\end{array}

This gives the following table:

⋅ 1 3 7 9
1 1 3 7 9
3 3 9 1 7
7 7 1 9 3
9 9 7 3 1

(d) It might be good to order the numbers at the top of the table so that they start with a 1 and
go by successive powers of 3.

The successive powers of 3 are 1, 3, 9, 7.

>>> create_group_table([1,3,9,7].index)
\begin{array}{c|c|c|c|c|}
\cdot & 1 & 3 & 9 & 7 \\ \hline
1 & 1 & 3 & 9 & 7 \\ \hline
3 & 3 & 9 & 7 & 1 \\ \hline
9 & 9 & 7 & 1 & 3 \\ \hline
7 & 7 & 1 & 3 & 9 \\ \hline
\end{array}

This gives the following table:

⋅ 1 3 9 7
1 1 3 9 7
3 3 9 7 1
9 9 7 1 3
7 7 1 3 9
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(e) What group is it isomorphic to?

It is now clear that this is isomorphic to the cyclic group of order 4, 𝐶4.

(f) Does it have any subgroups; if so, what are they?

It does have subgroups: the trivial subgroup {1} and the cyclic group of order 2, {1, 9}.

6. Now, a surprise: find the powers of 10, mod 14.

Here’s my one-liner in Python to do this:

>>> print(";\\quad ".join("10^%s \\equiv %s (\\operatorname{mod} 14)" %
(n, 10**n % 14) for n in range(1,8)))

101 ≡ 10(mod 14); 102 ≡ 2(mod 14); 103 ≡ 6(mod 14); 104 ≡ 4(mod 14);

105 ≡ 12(mod 14); 106 ≡ 8(mod 14); 107 ≡ 10(mod 14).

It cycles!

(a) How long is the period of this orbit?

The orbit appears to be 6 elements long, since 7 − 1 = 6.

(b) What number appears to be the identity element?

106 = 8 appears to be the identity element, since multiplying it by 10 yields 10.

(c) Make a table in which the identity element comes first.

>>> elements = [8,10,2,6,4,12];print("\\cdot & " + " & ".join(
map(str,elements)) + " \\\\ \\hline");print("\n".join(

" & ".join([str(i)] + map(lambda x: str((x * i) % 14), elements))
\cdot & 8 & 10 & 2 & 6 & 4 & 12 \\ \hline
8 & 8 & 10 & 2 & 6 & 4 & 12 \\ \hline
10 & 10 & 2 & 6 & 4 & 12 & 8 \\ \hline
2 & 2 & 6 & 4 & 12 & 8 & 10 \\ \hline
6 & 6 & 4 & 12 & 8 & 10 & 2 \\ \hline
4 & 4 & 12 & 8 & 10 & 2 & 6 \\ \hline
12 & 12 & 8 & 10 & 2 & 6 & 4 \\ \hline

Here’s how it looks:

⋅ 8 10 2 6 4 12
8 8 10 2 6 4 12
10 10 2 6 4 12 8
2 2 6 4 12 8 10
6 6 4 12 8 10 2
4 4 12 8 10 2 6
12 12 8 10 2 6 4

(d) Find a number besides 10 whose group of powers mod 14 is isomorphic to this group.

This is clearly the cyclic group of order 6, so we can choose any generator of this group to get the same
group. We might choose 12 for example.

>>> print(";\\quad ".join("12^%s \\equiv %s (\\operatorname{mod} 14)" %
(n, 12**n % 14) for n in range(1,8)))
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121 ≡ 12(mod 14); 122 ≡ 4(mod 14); 123 ≡ 6(mod 14); 124 ≡ 2(mod 14);

125 ≡ 10(mod 14); 126 ≡ 8(mod 14); 127 ≡ 12(mod 14)

Indeed, we get the same numbers, but in a different order.

(e) Are these groups isomorphic to a multiplication group of a smaller modulus?

Yes, this group is isomorphic to the multiplicative group mod 7, since 7 is a prime and would produce the
cyclic group of order 6.

7. To really tell if two groups are isomorphic, you can write their tables in such an order that they
would be identical if you substituted them in place. Why is it helpful to first note the periods and
orbits of each element?

This is helpful because then you know which elements could possibly correspond, and which elements
definitely don’t correspond (i.e. the ones with different periods). Also, once you have chosen one correspon-
dence, all the elements in that orbit are determined.

For the suggested problems, you can write your own program (or use my program) to investigate!
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15 Eigenvectors and Eigenvalues

1. Consider the matrix equation
[

0 1
6 1

] [

𝑥
𝑦

]

=
[

𝑦
6𝑥 + 𝑦

]

=
[

𝑥′
𝑦′

]

. We wish to find an eigen-

vector
[

𝑥
𝑦

]

.

(a) On graph paper, draw what the matrix
[

0 1
6 1

]

does to the vectors
[

1
0

]

and
[

0
1

]

.

[

1
0

]

goes to
[

0
6

]

(dashed lines) and
[

0
1

]

goes to
[

1
1

]

(solid lines):

−1
0
1
2
3
4
5
6𝑦

−2 0 2
𝑥

Figure 1: The mapping of the matrix.

(b) In your picture, draw a rough line through the origin where you think a family of eigenvec-
tors may be.

This is the line where vectors should change direction. Thus, it should be roughly where the diagram is
“flipped,” though this definitely is not a pure reflection.

−1
0
1
2
3
4
5
6

𝑦

−2 0 2
𝑥

𝑙

Figure 2: The mapping of the matrix, with the suspected eigenvectors indicated by 𝑙.

(c) Try some lattice points, say
[ 1
1
]

,
[ 1
2
]

,
[ 1
3
]

,
[ 1
4
]

,
[ 1
5
]

. What does the matrix transform each
vector into?

These points are transformed as follows:
[

0 1
6 1

] [

1
1

]

=
[

1
7

]

;

[

0 1
6 1

] [

1
2

]

=
[

2
8

]

;
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[

0 1
6 1

] [

1
3

]

=
[

3
9

]

;
[

0 1
6 1

] [

1
4

]

=
[

4
10

]

;
[

0 1
6 1

] [

1
5

]

=
[

5
11

]

.

(d) Which of these is an eigenvector?
[

1
3

]

is an eigenvector, since the image is
[

3
9

]

, which is just the original vector times 3.

(e) Does it lie near the line you drew earlier?

Well, it lies on the line I drew because I’m using the computer, but it should lie close. Here it is superim-
posed on the previous graph:

−1
0
1
2
3
4
5
6

𝑦

−2 0 2
𝑥

𝑙

Figure 3: The mapping of the matrix, with the suspected eigenvectors indicated by 𝑙.

2. This guess-and-check process for finding eigenvectors is terrible, so let’s develop a procedure
to find the eigenvalues and eigenvectors for any 2 × 2 matrix. We will use the same example.

[

0 1
6 1

] [

𝑥
𝑦

]

= 𝜆
[

𝑥
𝑦

]

Definition of eigenvector

= 𝜆
[

1 0
0 1

] [

𝑥
𝑦

]

⟹

([

0 1
6 1

]

− 𝜆
[

1 0
0 1

])[

𝑥
𝑦

]

=
[

0
0

]

Subtraction and factoring

⟹

[

−𝜆 1
6 1 − 𝜆

] [

𝑥
𝑦

]

=
[

0
0

]

(a) If
[ 𝑥
𝑦
]

≠
[ 0
0
]

, then

det
[

−𝜆 1
6 1 − 𝜆

]

= 0.

Why? Think inverses.

If we left-multiply both sides of the last equation above by the inverse of the 2 × 2 matrix, we’ll get

[

𝑥
𝑦

]

=
[

−𝜆 1
6 1 − 𝜆

]−1 [ 0
0

]

=
[

0
0

]

.

But we assumed
[

𝑥
𝑦

]

≠
[

0
0

]

, so the inverse must not exist—that’s the only other case. Thus,

det
[

−𝜆 1
6 1 − 𝜆

]

= 0.
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(b) Find the above determinant in terms of 𝜆 and solve for the eigenvalues.

We have

det
[

−𝜆 1
6 1 − 𝜆

]

= −(1 − 𝜆)𝜆 − 1(6) = 𝜆2 − 𝜆 − 6.

This is just a quadratic in 𝜆, which factors as

(𝜆 + 2)(𝜆 − 3) = 0.

Thus, 𝜆 = −2, 3.

(c) One eigenvalue is 𝜆 = 3. We solve for the associated eigenvector like so:
[

0
0

]

=
[

−𝜆 1
6 1 − 𝜆

] [

𝑥
𝑦

]

=
[

−3 1
6 −2

] [

𝑥
𝑦

]

⟹

[

0
0

]

=
[

−3𝑥 + 𝑦
6𝑥 − 2𝑦

]

⟹ 𝑦 = 3𝑥 →

[

𝑥
𝑦

]

= 𝑠
[

1
3

]

(for some 𝑠)

Solve for the other eigenvector using the other eigenvalue from part (b).

The other eigenvalue is −2.

[

0
0

]

=
[

−𝜆 1
6 1 − 𝜆

] [

𝑥
𝑦

]

=
[

2 1
6 3

] [

𝑥
𝑦

]

⟹

[

0
0

]

=
[

2𝑥 + 𝑦
6𝑥 + 3𝑦

]

⟹ 𝑦 = −2𝑥 →

[

𝑥
𝑦

]

= 𝑠
[

1
−2

]

.

(d) Check your work by multiplying the original matrix by the eigenvector!

[

0 1
6 1

]

𝑠
[

1
−2

]

= 𝑠
[

0 ⋅ 1 − 2 ⋅ 1
6 ⋅ 1 − 2 ⋅ 1

]

= 𝑠
[

−2
4

]

= −2 ⋅
(

𝑠
[

1
−2

])

.

Indeed, the image of 𝑠
[

1
−2

]

is the pre-image scaled by −2.

3. Solve for the eigenvectors and eigenvalues of the following matrices:

(a)
[

3 24
4 7

]
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[

3 24
4 7

] [

𝑥
𝑦

]

= 𝜆
[

𝑥
𝑦

]

Definition of eigenvector

= 𝜆
[

1 0
0 1

] [

𝑥
𝑦

]

⟹

([

3 24
4 7

]

− 𝜆
[

1 0
0 1

])[

𝑥
𝑦

]

=
[

0
0

]

Subtraction and factoring

⟹

[

3 − 𝜆 24
4 7 − 𝜆

] [

𝑥
𝑦

]

=
[

0
0

]

det
[

3 − 𝜆 24
4 7 − 𝜆

]

= 0

(3 − 𝜆)(7 − 𝜆) − 24(4) = 0

𝜆2 − 10𝜆 − 75 = 0
(𝜆 + 5)(𝜆 − 15) = 0

𝜆 = −5, 15.

Thus, the eigenvalues are −5 and 15. We now find the corresponding eigenvectors.
−5:

[

0
0

]

=
[

3 − 𝜆 24
4 7 − 𝜆

] [

𝑥
𝑦

]

=
[

8 24
4 12

] [

𝑥
𝑦

]

⟹

[

0
0

]

=
[

8𝑥 + 24𝑦
4𝑥 + 12𝑦

]

⟹ 𝑦 = −3𝑥 →

[

𝑥
𝑦

]

= 𝑠
[

1
−3

]

.

The first eigenvalue-eigenvector pair is
{

−5,
[

1
−3

]}

.

15:

[

0
0

]

=
[

3 − 𝜆 24
4 7 − 𝜆

] [

𝑥
𝑦

]

=
[

−12 24
4 −8

] [

𝑥
𝑦

]

⟹

[

0
0

]

=
[

−12𝑥 + 24𝑦
4𝑥 − 8𝑦

]

⟹ 𝑦 = 2𝑥 →

[

𝑥
𝑦

]

= 𝑠
[

1
2

]

.

The second eigenvalue-eigenvector pair is
{

15,
[

1
2

]}

.

(b)
[

3 1
2 4

]
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[

3 1
2 4

] [

𝑥
𝑦

]

= 𝜆
[

𝑥
𝑦

]

Definition of eigenvector

= 𝜆
[

1 0
0 1

] [

𝑥
𝑦

]

⟹

([

3 1
2 4

]

− 𝜆
[

1 0
0 1

])[

𝑥
𝑦

]

=
[

0
0

]

Subtraction and factoring

⟹

[

3 − 𝜆 1
2 4 − 𝜆

] [

𝑥
𝑦

]

=
[

0
0

]

det
[

3 − 𝜆 1
2 4 − 𝜆

]

= 0

(3 − 𝜆)(4 − 𝜆) − 1(2) = 0
(𝜆 − 2)(𝜆 − 5) = 0

𝜆 = 2, 5.

Thus, the eigenvalues are 2 and 5. We now find the corresponding eigenvectors.
2:

[

0
0

]

=
[

3 − 𝜆 1
2 4 − 𝜆

] [

𝑥
𝑦

]

=
[

1 1
2 2

] [

𝑥
𝑦

]

⟹

[

0
0

]

=
[

𝑥 + 𝑦
2𝑥 + 2𝑦

]

⟹ 𝑦 = −𝑥 →

[

𝑥
𝑦

]

= 𝑠
[

1
−1

]

.

The first eigenvalue-eigenvector pair is
{

2,
[

1
−1

]}

.

5:

[

0
0

]

=
[

3 − 𝜆 1
2 4 − 𝜆

] [

𝑥
𝑦

]

=
[

−2 1
2 −1

] [

𝑥
𝑦

]

⟹

[

0
0

]

=
[

−2𝑥 + 𝑦
2𝑥 − 𝑦

]

⟹ 𝑦 = 2𝑥 →

[

𝑥
𝑦

]

= 𝑠
[

1
2

]

.

The second eigenvalue-eigenvector pair is
{

5,
[

1
2

]}

.

(c)
[

1 −1
4 6

]
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[

1 −1
4 6

] [

𝑥
𝑦

]

= 𝜆
[

𝑥
𝑦

]

Definition of eigenvector

= 𝜆
[

1 0
0 1

] [

𝑥
𝑦

]

⟹

([

1 −1
4 6

]

− 𝜆
[

1 0
0 1

])[

𝑥
𝑦

]

=
[

0
0

]

Subtraction and factoring

⟹

[

1 − 𝜆 −1
4 6 − 𝜆

] [

𝑥
𝑦

]

=
[

0
0

]

det
[

1 − 𝜆 −1
4 6 − 𝜆

]

= 0

(1 − 𝜆)(6 − 𝜆) − (−1)(4) = 0
(𝜆 − 2)(𝜆 − 5) = 0

𝜆 = 2, 5.

Thus, the eigenvalues are 2 and 5. Interestingly, these are the same eigenvalues as the previous problem.
We now find the corresponding eigenvectors.

2:

[

0
0

]

=
[

1 − 𝜆 −1
4 6 − 𝜆

] [

𝑥
𝑦

]

=
[

−1 −1
4 4

] [

𝑥
𝑦

]

⟹

[

0
0

]

=
[

𝑥 + 𝑦
4𝑥 + 4𝑦

]

⟹ 𝑦 = −𝑥 →

[

𝑥
𝑦

]

= 𝑠
[

1
−1

]

.

The first eigenvalue-eigenvector pair is
{

2,
[

1
−1

]}

.

5:

[

0
0

]

=
[

1 − 𝜆 −1
4 6 − 𝜆

] [

𝑥
𝑦

]

=
[

−4 −1
4 1

] [

𝑥
𝑦

]

⟹

[

0
0

]

=
[

−4𝑥 − 𝑦
4𝑥 + 𝑦

]

⟹ 𝑦 = −4𝑥 →

[

𝑥
𝑦

]

= 𝑠
[

1
−4

]

.

The second eigenvalue-eigenvector pair is
{

5,
[

1
−4

]}

.

4. The image of an eigenvector will have the same when acted on by the transformation
for which it is an eigenvector. The image of the eigenvector is simply the eigenvector

itself multiplied by its corresponding .

The image of an eigenvector will have the same direction when acted on by the transformation matrix
for which it is an eigenvector. The image of the eigenvector is simply the eigenvector itself multiplied by its
corresponding eigenvalue.
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5.

(a) If the transformation matrix were a reflection over a line 𝑦 = 𝑥 tan 𝜃, in what directions
would the two eigenvectors point? Think geometrically.

Geometrically, the eigenvectors would be 1. along the line 𝑦 = 𝑥 tan 𝜃 and 2. perpendicular to the line.
Observe the figure below if you’re confused.

y

x

𝑙

𝑒1𝑒2

Figure 4: The eigenvectors 𝑒1, 𝑒2 of reflection over the line 𝑙.

(b) What would the angle between them be?

The angle between them is 90◦, since one is along a line and the other is perpendicular to that line.

(c) What would their eigenvalues be?

Referring to the above figure, 𝑒1 would have an eigenvalue of 1, since its magnitude and direction is
completely preserved, while 𝑒2 would have an eigenvalue of −1, since it is multiplied by −1 to be inverted like
that.

6. Recall that multiplication by
[

cos 2𝜃 sin 2𝜃
sin 2𝜃 −cos 2𝜃

]

results in a reflection over 𝑦 = 𝑥 tan 𝜃.

(a) Write a matrix that results in a reflection over the line 𝑦 =
√

3
3 𝑥.

The angle here is

tan−1
√

3
3

= tan−1 1
√

3
= tan−1

1∕2

1∕
√

3
= 30◦.

Thus, the matrix is

[

cos 2 ⋅ 30◦ sin 2 ⋅ 30◦
sin 2 ⋅ 30◦ −cos 2 ⋅ 30◦

]

=
⎡

⎢

⎢

⎣

1
2

√

3
2

√

3
2 − 1

2

⎤

⎥

⎥

⎦

.

(b) Find the eigenvalues of that matrix, and the corresponding eigenvectors.

We find the eigenvalues:

⎡

⎢

⎢

⎣

1
2 − 𝜆

√

3
2

√

3
2 − 1

2 − 𝜆

⎤

⎥

⎥

⎦

[

𝑥
𝑦

]

=
[

0
0

]
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(1
2
− 𝜆

)(

−1
2
− 𝜆

)

−

√

3
2

⋅

√

3
2

= 𝜆2 − 1
4
− 3

4
= 𝜆2 − 1

𝜆 = ±1.

We then find the corresponding eigenvectors:
1:

[

0
0

]

=
⎡

⎢

⎢

⎣

1
2 − 𝜆

√

3
2

√

3
2 − 1

2 − 𝜆

⎤

⎥

⎥

⎦

[

𝑥
𝑦

]

=
⎡

⎢

⎢

⎣

− 1
2

√

3
2

√

3
2 − 3

2

⎤

⎥

⎥

⎦

[

𝑥
𝑦

]

⟹

[

0
0

]

=
⎡

⎢

⎢

⎣

− 1
2𝑥 +

√

3
2 𝑦

√

3
2 𝑥 − 3

2𝑦

⎤

⎥

⎥

⎦

⟹ 𝑦 = 𝑥
√

3
→

[

𝑥
𝑦

]

= 𝑠
[ √

3
1

]

.

−1:

[

0
0

]

=
⎡

⎢

⎢

⎣

1
2 − 𝜆

√

3
2

√

3
2 − 1

2 − 𝜆

⎤

⎥

⎥

⎦

[

𝑥
𝑦

]

=
⎡

⎢

⎢

⎣

3
2

√

3
2

√

3
2

1
2

⎤

⎥

⎥

⎦

[

𝑥
𝑦

]

⟹

[

0
0

]

=
⎡

⎢

⎢

⎣

3
2𝑥 +

√

3
2 𝑦

√

3
2 𝑥 + 1

2𝑦

⎤

⎥

⎥

⎦

⟹ 𝑦 = −𝑥
√

3 →

[

𝑥
𝑦

]

= 𝑠
[

1
−
√

3

]

.

Thus, the eigenvalue-eigenvector pairs are
{

1,
[ √

3
1

]}

and
{

1,
[

1
−
√

3

]}

.

(c) Do your calculations agree with your answers to the previous problem?

Yes, they do. Here are the graphs of those two eigenvectors:

0

1

y

−0.5 0 0.5 1
x

𝜃 = 30◦

𝑒1
𝑒2
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Figure 5: The calculated eigenvectors with the line 𝜃 = 30◦.

The corresponding eigenvalues also match up.

(d) What are the relationships between the two eigenvectors and between the two eigenval-
ues?

The two eigenvectors are 90◦ displaced from one another. The two eigenvalues are opposites.

7.

(a) Write a matrix which results in a 60◦ rotation counterclockwise.

This is just
[

cos 60◦ − sin 60◦
sin 60◦ cos 60◦

]

=
⎡

⎢

⎢

⎣

1
2 −

√

3
2

√

3
2

1
2

⎤

⎥

⎥

⎦

.

(b) Find the eigenvalues. What do you find strange?

We solve the equation

det
⎡

⎢

⎢

⎣

1
2 − 𝜆 −

√

3
2

√

3
2

1
2 − 𝜆

⎤

⎥

⎥

⎦

= 0.

(1
2
− 𝜆

)(1
2
− 𝜆

)

−

(

−

√

3
2

)

⋅

√

3
2

= 0

𝜆2 − 𝜆 + 1
4
+ 3

4
= 0

𝜆2 − 𝜆 + 1 = 0

𝜆 =
1 ±

√

−3
2

𝜆 = 1
2
+

√

3
2

𝑖, 1
2
−

√

3
2

𝑖.

The eigenvalues are complex! They have magnitude 1, however, like the eigenvalues of the reflection.

(c) Find the eigenvectors for those eigenvalues. What’s strange about them?

1
2 +

√

3
2 𝑖 ∶

⎡

⎢

⎢

⎣

1
2 − 𝜆 −

√

3
2

√

3
2

1
2 − 𝜆

⎤

⎥

⎥

⎦

[

𝑥
𝑦

]

=
⎡

⎢

⎢

⎣

−
√

3
2 𝑖 −

√

3
2

√

3
2 −

√

3
2 𝑖

⎤

⎥

⎥

⎦

[

𝑥
𝑦

]

=
[

0
0

]

⎡

⎢

⎢

⎣

−
√

3
2 𝑖𝑥 −

√

3
2 𝑦

√

3
2 𝑥 −

√

3
2 𝑖𝑦

⎤

⎥

⎥

⎦

=
[

0
0

]

⟹ 𝑦 = −𝑖𝑥 →

[

𝑥
𝑦

]

= 𝑠
[

1
−𝑖

]

.

Weird!
1
2 −

√

3
2 𝑖 ∶
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⎡

⎢

⎢

⎣

1
2 − 𝜆 −

√

3
2

√

3
2

1
2 − 𝜆

⎤

⎥

⎥

⎦

[

𝑥
𝑦

]

=
⎡

⎢

⎢

⎣

√

3
2 𝑖 −

√

3
2

√

3
2

√

3
2 𝑖

⎤

⎥

⎥

⎦

[

𝑥
𝑦

]

=
[

0
0

]

⎡

⎢

⎢

⎣

√

3
2 𝑖𝑥 −

√

3
2 𝑦

√

3
2 𝑥 +

√

3
2 𝑖𝑦

⎤

⎥

⎥

⎦

=
[

0
0

]

⟹ 𝑦 = 𝑖𝑥 →

[

𝑥
𝑦

]

= 𝑠
[

1
𝑖

]

.

Fascinating! The eigenvalue-eigenvector pairs are
{

1
2 +

√

3
2 𝑖,

[

1
−𝑖

]}

and
{

1
2 −

√

3
2 𝑖,

[

1
𝑖

]}

.

(d) Explain what’s going on.

There are no vectors which don’t change orientation under a rotation, so the solutions we get can’t be
real. Nonetheless, a quadratic always has two roots if the discriminant is nonzero, so we get two solutions.

(e) What are the relationships between the two eigenvectors and between the two eigenval-
ues?

The eigenvalues are each other’s complex conjugates. The eigenvectors, graphed in the complex plane,
form a 90◦ between each other.

8. The matrix
[

1 2
0 1

]

is a shear parallel to the 𝑥-axis.

(a) What vectors don’t change direction when multiplied by this matrix?

Only vectors parallel to the 𝑥-axis don’t change direction, i.e.
[

𝑠
0

]

for any real 𝑠.

(b) What would you expect the eigenvectors to be?

We’d expect there to only be one family of eigenvectors,
[

1
0

]

.

(c) Find the eigenvectors and eigenvalues of this matrix.

We want det
[

1 − 𝜆 2
0 1 − 𝜆

]

= 0, which simplifies to (𝜆−1)2 = 0. Thus, there is only one eigenvalue: 1.

This makes sense.

The eigenvector is the solution to
[

0 2
0 0

] [

𝑥
𝑦

]

=
[

0
0

]

, which gives
[

2𝑦
0

]

=
[

0
0

]

. Thus, 𝑦 = 0,

and the eigenvectors are the family 𝑠
[

1
0

]

.

(d) What is different this time?

There is only one eigenvector and eigenvalue!

(e) Can you represent every vector as sums of eigenvectors?

In this case, you cannot represent every vector as a sum of eigenvectors. After all, any sum of the one
eigenvector cannot have a nonzero 𝑦 coordinate.

9. The matrices below result in some stretches. Find the eigenvectors and eigenvalues for both.

(a)
[ 2 0
0 5

]

168



The characteristic polynomial28 is just (2 − 𝜆)(5 − 𝜆), which gives eigenvalues 𝜆 = 2, 5.
2:

[

2 − 2 0
0 5 − 2

] [

𝑥
𝑦

]

=
[

0
0

]

[

0
3𝑦

]

=
[

0
0

]

.

Thus, 𝑦 = 0 and the family of eigenvectors is
[

1
0

]

.

5:
[

2 − 5 0
0 5 − 5

] [

𝑥
𝑦

]

=
[

0
0

]

[

−3𝑥
0

]

=
[

0
0

]

.

Thus, 𝑥 = 0 and the family of eigenvectors is
[

0
1

]

.

(b)
[ 3 0
0 3

]

The characteristic polynomial here is (3 − 𝜆)(3 − 𝜆), yielding 𝜆 = 3. We find the eigenvector:
[

3 − 3 0
0 3 − 3

] [

𝑥
𝑦

]

=
[

0
0

]

[

0
0

]

=
[

0
0

]

.

Thus, all
[

𝑥
𝑦

]

are eigenvectors. This makes sense! After all, all vectors are scaled up by a factor of 3,

and no vectors change direction.

10. Note that most 2 × 2 matrices have two eigenvectors. How many would you expect to find for an
𝑛 × 𝑛 matrix?

You’d expect there to be 𝑛 eigenvectors in an 𝑛 × 𝑛 matrix. One way to rationalize this further is that the
characteristic polynomial of an 𝑛 × 𝑛 matrix is degree 𝑛, which usually has 𝑛 roots.

11. Assuming that 𝑝, 𝑞, 𝑟, 𝑠, 𝑡, 𝑢, 𝑥, 𝑦 are real, what conditions would you impose on them in the matri-

ces (i)
[

3 𝑝
𝑞 4

]

, (ii)
[

𝑥 −2
3 𝑦

]

, and (iii)
[

𝑟 𝑠
𝑡 𝑢

]

to have...

(a) ... two real eigenvalues?

i.
[

3 𝑝
𝑞 4

]

The characteristic polynomial here is (3 − 𝜆)(4 − 𝜆) − 𝑝𝑞. Expanded out, this is 𝜆2 −7𝜆+12− 𝑝𝑞. We want
the discriminant to be greater than 0 to have two real eigenvalues, so

𝑏2 − 4𝑎𝑐 = 72 − 4(1)(12 − 𝑝𝑞) > 0
48 − 4𝑝𝑞 < 49 Manipulate, flip the inequality

4𝑝𝑞 > −1Subtract 48 from both sides

𝑝𝑞 > −1
4
.

This is our restriction; we must have 𝑝𝑞 > − 1
4 .

28The polynomial involving 𝜆 determining the eigenvalues.
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ii.
[

𝑥 −2
3 𝑦

]

The characteristic polynomial here is (𝑥 − 𝜆)(𝑦 − 𝜆) − (−2)(3). This expands out to 𝜆2 − (𝑥 + 𝑦)𝜆 + 𝑥𝑦 + 6.
Again, we want the discriminant to be greater than 0 to have two real eigenvalues, so

𝑏2 − 4𝑎𝑐 = (𝑥 + 𝑦)2 − 4(1)(𝑥𝑦 + 6) > 0

𝑥2 + 𝑦2 + 2𝑥𝑦 − 4𝑥𝑦 − 24 > 0

𝑥2 − 2𝑥𝑦 + 𝑦2 > 24

(𝑥 − 𝑦)2 > 24.

Thus, our restriction is (𝑥 − 𝑦)2 > 24, or equivalently, |𝑥 − 𝑦| >
√

24 = 2
√

6.
This is always true by the Trivial Inequality29. Thus, there are always two real eigenvalues for this matrix.

iii.
[

𝑟 𝑠
𝑡 𝑢

]

The characteristic polynomial here is (𝑟 − 𝜆)(𝑢 − 𝜆) − 𝑠𝑡, which expands out to

𝜆2 − (𝑢 + 𝑟)𝜆 + 𝑟𝑢 − 𝑠𝑡.

Again, we want the discriminant to be greater than 0 to have two real eigenvalues, so

𝑏2 − 4𝑎𝑐 = (𝑢 + 𝑟)2 − 4(𝑟𝑢 − 𝑠𝑡) > 0

𝑢2 + 𝑟2 + 2𝑟𝑢 − 4𝑟𝑢 − 4𝑠𝑡 > 0

𝑢2 − 2𝑟𝑢 + 𝑟2 > 4𝑠𝑡

(𝑢 − 𝑟)2 > 4𝑠𝑡.

There isn’t a great way to simplify this, but (𝑢−𝑟)2 > 4𝑠𝑡 is a potential answer. The first line of the equations
above also gives us a potentially simpler interpretation:

(𝑢 + 𝑟)2 > 4(𝑟𝑢 − 𝑠𝑡) = 4 det
[

𝑟 𝑠
𝑡 𝑢

]

.

Thus, the sum of the top-left to bottom-right diagonal squared must be greater than four times the deter-
minant. Wordy!

(b) ... two complex eigenvalues?

i.
[

3 𝑝
𝑞 4

]

This is identical to problem (a) part i, but we want the discriminant to be smaller than 0. The proof is
identical, just with a flipped inequality sign, so the answer is

𝑝𝑞 < −1
4
.

ii.
[

𝑥 −2
3 𝑦

]

This is identical to problem (a) part ii, but we want the discriminant to be smaller than 0. The proof is
identical, just with a flipped inequality sign, so the answer is

(𝑥 − 𝑦)2 < 24.
29The Trivial Inequality states 𝑥2 ≥ 0 for all real 𝑥.
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iii.
[

𝑟 𝑠
𝑡 𝑢

]

This is identical to problem (a) part iii, but we want the discriminant to be smaller than 0. The proof is
identical, just with a flipped inequality sign, so the answer is

(𝑢 − 𝑟)2 < 4𝑠𝑡 or (𝑢 + 𝑟)2 < 4 det
[

𝑟 𝑠
𝑡 𝑢

]

.

(c) ... only one eigenvalue?

i.
[

3 𝑝
𝑞 4

]

This is identical to the previous two iterations of this matrix, but with an equality sign:

𝑝𝑞 = −1
4
.

ii.
[

𝑥 −2
3 𝑦

]

This is identical to the previous two iterations of this matrix, but with an equality sign:

(𝑥 − 𝑦)2 = 24 → 𝑥 − 𝑦 = ±2
√

6.

iii.
[

𝑟 𝑠
𝑡 𝑢

]

This is identical to the previous two iterations of this matrix, but with an equality sign:

(𝑢 − 𝑟)2 = 4𝑠𝑡 or (𝑢 + 𝑟)2 = 4 det
[

𝑟 𝑠
𝑡 𝑢

]

.

12.

(a) Write a 3 × 3 matrix showing a rotation of 𝜃 around the 𝑧-axis.

We already did this a couple sections ago. The matrix is

⎡

⎢

⎢

⎣

cos 𝜃 − sin 𝜃 0
sin 𝜃 cos 𝜃 0
0 0 1

⎤

⎥

⎥

⎦

.

(b) Name the real eigenvector (this shouldn’t require any work).

The real eigenvector is the 𝑧-axis, since it doesn’t move (observe the figure below if you’re confused).
Explicitly, this is the family of eigenvectors

𝑠
⎡

⎢

⎢

⎣

0
0
1

⎤

⎥

⎥

⎦

.

171



Figure 6: The 𝑧-axis remains stationary in a rotation of 𝜃 around the 𝑧-axis.

(c) Find all three eigenvectors.

The determinant of the eigenvector matrix is, by the minors method:

0 = det
⎡

⎢

⎢

⎣

cos 𝜃 − 𝜆 − sin 𝜃 0
sin 𝜃 cos 𝜃 − 𝜆 0
0 0 1 − 𝜆

⎤

⎥

⎥

⎦

= (cos 𝜃−𝜆) det
[

cos 𝜃 − 𝜆 0
0 1 − 𝜆

]

−(− sin 𝜃) det
[

sin 𝜃 0
0 1 − 𝜆

]

+0 (something)

= (cos 𝜃 − 𝜆)(cos 𝜃 − 𝜆)(1 − 𝜆) + (sin 𝜃)(sin 𝜃)(1 − 𝜆)

= (1 − 𝜆)((cos 𝜃 − 𝜆)2 + (sin 𝜃)(sin 𝜃))

= (1 − 𝜆)(𝑙𝑎𝑚𝑏𝑑𝑎2 + cos2 𝜃 − 2𝜆 cos 𝜃 + sin2 𝜃)

= (1 − 𝜆)(𝜆2 − 2𝜆 cos 𝜃 + cos2 𝜃 + sin2 𝜃
⏟⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏟

diff of squares

)

= (1 − 𝜆)(𝜆 − (cos 𝜃 − 𝑖 sin 𝜃))(𝜆 − (cos 𝜃 + 𝑖 sin 𝜃)).

This gives eigenvalues 1, cos 𝜃 − 𝑖 sin 𝜃 and cos 𝜃 + 𝑖 sin 𝜃. We already knew about the first one.
We now compute the eigenvectors:
1:

⎡

⎢

⎢

⎣

cos 𝜃 − 𝜆 − sin 𝜃 0
sin 𝜃 cos 𝜃 − 𝜆 0
0 0 1 − 𝜆

⎤

⎥

⎥

⎦

⎡

⎢

⎢

⎣

𝑥
𝑦
𝑧

⎤

⎥

⎥

⎦

=
⎡

⎢

⎢

⎣

0
0
0

⎤

⎥

⎥

⎦

⎡

⎢

⎢

⎣

cos 𝜃 − 1 − sin 𝜃 0
sin 𝜃 cos 𝜃 − 1 0
0 0 0

⎤

⎥

⎥

⎦

⎡

⎢

⎢

⎣

𝑥
𝑦
𝑧

⎤

⎥

⎥

⎦

=
⎡

⎢

⎢

⎣

(cos 𝜃 − 1)𝑥 − (sin 𝜃)𝑦
(sin 𝜃)𝑥 + (cos 𝜃 − 1)𝑦

0

⎤

⎥

⎥

⎦

=
⎡

⎢

⎢

⎣

0
0
0

⎤

⎥

⎥

⎦

.

Thus, (cos 𝜃 − 1)𝑥 − (sin 𝜃)𝑦 = 0 and (sin 𝜃)𝑥 + (cos 𝜃 − 1)𝑦 = 0. The first equation yields 𝑥 = sin 𝜃
cos 𝜃−1𝑦.

Substitution into the second equation yields

𝑦 sin2 𝜃
cos 𝜃 − 1

+ (cos 𝜃 − 1)𝑦 = 0

𝑦
(

sin2 𝜃 + (cos 𝜃 − 1)2

cos 𝜃 − 1

)

= 0
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𝑦
(

sin2 𝜃 + cos2 𝜃 − 2 cos 𝜃 + 1
cos 𝜃 − 1

)

= 0

𝑦
(2 − 2 cos 𝜃

cos 𝜃 − 1

)

= 0

−2𝑦 = 0

𝑦 = 0.

Thus, 𝑥 = 𝑦 = 0, or cos 𝜃−1 = 0 (since then the first substitution is invalid). This makes sense! If cos 𝜃 = 1,
then it’s a rotation by 0◦, which has all vectors as eigenvectors. Anyway, this otherwise gives the family of

eigenvectors 𝑠
⎡

⎢

⎢

⎣

0
0
1

⎤

⎥

⎥

⎦

.

cos 𝜃 − 𝑖 sin 𝜃:

⎡

⎢

⎢

⎣

cos 𝜃 − 𝜆 − sin 𝜃 0
sin 𝜃 cos 𝜃 − 𝜆 0
0 0 1 − 𝜆

⎤

⎥

⎥

⎦

⎡

⎢

⎢

⎣

𝑥
𝑦
𝑧

⎤

⎥

⎥

⎦

=
⎡

⎢

⎢

⎣

0
0
0

⎤

⎥

⎥

⎦

⎡

⎢

⎢

⎣

𝑖 sin 𝜃 − sin 𝜃 0
sin 𝜃 𝑖 sin 𝜃 0
0 0 𝑖 sin 𝜃 − cos 𝜃

⎤

⎥

⎥

⎦

⎡

⎢

⎢

⎣

𝑥
𝑦
𝑧

⎤

⎥

⎥

⎦

=
⎡

⎢

⎢

⎣

(𝑖 sin 𝜃)𝑥 − (sin 𝜃)𝑦 + 1
(sin 𝜃)𝑥 + (𝑖 sin 𝜃)𝑦
(𝑖 sin 𝜃 − cos 𝜃 + 1)𝑧

⎤

⎥

⎥

⎦

=
⎡

⎢

⎢

⎣

0
0
0

⎤

⎥

⎥

⎦

.

Since 𝑖 sin 𝜃 − cos 𝜃 + 1 ≠ 0 except for cos 𝜃 = 1 (the rotation of 0 again), this yields 𝑧 = 0 and 𝑥 = 𝑖𝑦, so

the family of eigenvectors is 𝑠
⎡

⎢

⎢

⎣

𝑖
1
0

⎤

⎥

⎥

⎦

.

cos 𝜃 + 𝑖 sin 𝜃:

⎡

⎢

⎢

⎣

cos 𝜃 − 𝜆 − sin 𝜃 0
sin 𝜃 cos 𝜃 − 𝜆 0
0 0 1 − 𝜆

⎤

⎥

⎥

⎦

⎡

⎢

⎢

⎣

𝑥
𝑦
𝑧

⎤

⎥

⎥

⎦

=
⎡

⎢

⎢

⎣

0
0
0

⎤

⎥

⎥

⎦

⎡

⎢

⎢

⎣

−𝑖 sin 𝜃 − sin 𝜃 0
sin 𝜃 −𝑖 sin 𝜃 0
0 0 cos 𝜃 − 𝑖 sin 𝜃 + 1

⎤

⎥

⎥

⎦

⎡

⎢

⎢

⎣

𝑥
𝑦
𝑧

⎤

⎥

⎥

⎦

=
⎡

⎢

⎢

⎣

−(𝑖 sin 𝜃)𝑥 − (sin 𝜃)𝑦
(sin 𝜃)𝑥 − (𝑖 sin 𝜃)𝑦
(1 − 𝑖 sin 𝜃 − cos 𝜃)𝑧

⎤

⎥

⎥

⎦

=
⎡

⎢

⎢

⎣

0
0
0

⎤

⎥

⎥

⎦

.

For nonzero rotations, this yields 𝑧 = 0 and 𝑥 = −𝑖𝑦, giving the family of eigenvectors 𝑠 =
⎡

⎢

⎢

⎣

−𝑖
1
0

⎤

⎥

⎥

⎦

.

Overall, the eigenvalue-eigenvector pairs are

⎧

⎪

⎨

⎪

⎩

1,
⎡

⎢

⎢

⎣

0
0
1

⎤

⎥

⎥

⎦

⎫

⎪

⎬

⎪

⎭

,

⎧

⎪

⎨

⎪

⎩

cos 𝜃 − 𝑖 sin 𝜃,
⎡

⎢

⎢

⎣

𝑖
1
0

⎤

⎥

⎥

⎦

⎫

⎪

⎬

⎪

⎭

, and

⎧

⎪

⎨

⎪

⎩

cos 𝜃 + 𝑖 sin 𝜃,
⎡

⎢

⎢

⎣

−𝑖
1
0

⎤

⎥

⎥

⎦

⎫

⎪

⎬

⎪

⎭

.

13.

(d) What should the absolute value of an eigenvalue of any rotation matrix be?

It should be 1, since rotations don’t stretch anything and doesn’t change orientation. All distances are
preserved. This is true of our eigenvectors.

(e) The complex eigenvalues relate to the angle of rotation. What is that relationship?

The complex eigenvalues are cos 𝜃 + 𝑖 sin 𝜃 = cis 𝜃 and cos 𝜃 − 𝑖 sin 𝜃 = cis 𝜃, so they make an angle of 𝜃
with the real axis30 in the complex plane. Furthermore, the angle between them is 2𝜃.

30Note that we shouldn’t call it the 𝑥-axis, because this is a different set of axes than the 𝑥𝑦𝑧-axes we’re considering in this problem.
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14. In a right-handed coordinate system, rotations in three dimensions are performed by combina-
tions of the three matrices

𝑋 =
⎡

⎢

⎢

⎣

1 0 0
0 cos 𝛼 − sin 𝛼
0 sin 𝛼 cos 𝛼

⎤

⎥

⎥

⎦

, 𝑌 =
⎡

⎢

⎢

⎣

cos 𝛽 0 sin 𝛽
0 1 0

− sin 𝛽 0 cos 𝛽

⎤

⎥

⎥

⎦

, 𝑍 =
⎡

⎢

⎢

⎣

cos 𝛾 − sin 𝛾 0
sin 𝛾 cos 𝛾 0
0 0 1

⎤

⎥

⎥

⎦

.

Each matrix 𝑋, 𝑌 ,𝑍 rotates around the 𝑥, 𝑦, 𝑧 axes by 𝛼, 𝛽, 𝛾 , respectively.

In 2D, rotations combine to make other rotations. Similarly, if we combine any number of these
rotations, the net result will be a rotation about some axis—though not necessarily a coordinate
axis. Another way to picture this is that if we operate on an origin-centered sphere with these
matrices, there will always be two opposite points on the sphere which have no net movement.

Try computing the following products.

(a) 𝑋𝑌

𝑋𝑌 =
⎡

⎢

⎢

⎣

1 0 0
0 cos 𝛼 − sin 𝛼
0 sin 𝛼 cos 𝛼

⎤

⎥

⎥

⎦

⎡

⎢

⎢

⎣

cos 𝛽 0 sin 𝛽
0 1 0

− sin 𝛽 0 cos 𝛽

⎤

⎥

⎥

⎦

=
⎡

⎢

⎢

⎣

(1)(cos 𝛽) + (0)(0) + (0)(− sin 𝛽) (1)(0) + (0)(1) + (0)(0) (1)(sin 𝛽) + (0)(0) + (0)(cos 𝛽)
(0)(cos 𝛽) + (cos 𝛼)(0) + (− sin 𝛼)(− sin 𝛽) (0)(0) + (cos 𝛼)(1) + (− sin 𝛼)(0) (0)(sin 𝛽) + (cos 𝛼)(0) + (− sin 𝛼)(cos 𝛽)
(0)(cos 𝛽) + (sin 𝛼)(0) + (cos 𝛼)(− sin 𝛽) (0)(0) + (sin 𝛼)(1) + (cos 𝛼)(0) (0)(sin 𝛽) + (sin 𝛼)(0) + (cos 𝛼)(cos 𝛽)

⎤

⎥

⎥

⎦

=
⎡

⎢

⎢

⎣

cos 𝛽 0 sin 𝛽
sin 𝛼 sin 𝛽 cos 𝛼 − sin 𝛼 cos 𝛽

−cos 𝛼 sin 𝛽 sin 𝛼 cos 𝛼 cos 𝛽

⎤

⎥

⎥

⎦

.

(b) 𝑋𝑍

𝑋𝑍 =
⎡

⎢

⎢

⎣

1 0 0
0 cos 𝛼 − sin 𝛼
0 sin 𝛼 cos 𝛼

⎤

⎥

⎥

⎦

⎡

⎢

⎢

⎣

cos 𝛾 − sin 𝛾 0
sin 𝛾 cos 𝛾 0
0 0 1

⎤

⎥

⎥

⎦

=
⎡

⎢

⎢

⎣

(1)(cos 𝛾) + (0)(sin 𝛾) + (0)(0) (1)(− sin 𝛾) + (0)(cos 𝛾) + (0)(0) (1)(0) + (0)(0) + (0)(1)
(0)(cos 𝛾) + (cos 𝛼)(sin 𝛾) + (− sin 𝛼)(0) (0)(− sin 𝛾) + (cos 𝛼)(cos 𝛾) + (− sin 𝛼)(0) (0)(0) + (cos 𝛼)(0) + (− sin 𝛼)(1)
(0)(cos 𝛾) + (sin 𝛼)(sin 𝛾) + (cos 𝛼)(0) (0)(− sin 𝛾) + (sin 𝛼)(cos 𝛾) + (cos 𝛼)(0) (0)(0) + (sin 𝛼)(0) + (cos 𝛼)(1)

⎤

⎥

⎥

⎦

=
⎡

⎢

⎢

⎣

cos 𝛾 − sin 𝛾 0
cos 𝛼 sin 𝛾 cos 𝛼 cos 𝛾 − sin 𝛼
sin 𝛼 sin 𝛾 sin 𝛼 cos 𝛾 cos 𝛼

⎤

⎥

⎥

⎦

.

(c) 𝑌 𝑋

𝑌𝑋 =
⎡

⎢

⎢

⎣

cos 𝛽 0 sin 𝛽
0 1 0

− sin 𝛽 0 cos 𝛽

⎤

⎥

⎥

⎦

⎡

⎢

⎢

⎣

1 0 0
0 cos 𝛼 − sin 𝛼
0 sin 𝛼 cos 𝛼

⎤

⎥

⎥

⎦

=
⎡

⎢

⎢

⎣

(cos 𝛽)(1) + (0)(0) + (sin 𝛽)(0) (cos 𝛽)(0) + (0)(cos 𝛼) + (sin 𝛽)(sin 𝛼) (cos 𝛽)(0) + (0)(− sin 𝛼) + (sin 𝛽)(cos 𝛼)
(0)(1) + (1)(0) + (0)(0) (0)(0) + (1)(cos 𝛼) + (0)(sin 𝛼) (0)(0) + (1)(− sin 𝛼) + (0)(cos 𝛼)

(− sin 𝛽)(1) + (0)(0) + (cos 𝛽)(0) (− sin 𝛽)(0) + (0)(cos 𝛼) + (cos 𝛽)(sin 𝛼) (− sin 𝛽)(0) + (0)(− sin 𝛼) + (cos 𝛽)(cos 𝛼)

⎤

⎥

⎥

⎦

=
⎡

⎢

⎢

⎣

cos 𝛽 sin 𝛽 sin 𝛼 sin 𝛽 cos 𝛼
0 cos 𝛼 − sin 𝛼

− sin 𝛽 cos 𝛽 sin 𝛼 cos 𝛽 cos 𝛼

⎤

⎥

⎥

⎦

.

(d) 𝑍𝑋
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𝑍𝑋 =
⎡

⎢

⎢

⎣

cos 𝛾 − sin 𝛾 0
sin 𝛾 cos 𝛾 0
0 0 1

⎤

⎥

⎥

⎦

⎡

⎢

⎢

⎣

1 0 0
0 cos 𝛼 − sin 𝛼
0 sin 𝛼 cos 𝛼

⎤

⎥

⎥

⎦

=
⎡

⎢

⎢

⎣

(cos 𝛾)(1) + (− sin 𝛾)(0) + (0)(0) (cos 𝛾)(0) + (− sin 𝛾)(cos 𝛼) + (0)(sin 𝛼) (cos 𝛾)(0) + (− sin 𝛾)(− sin 𝛼) + (0)(cos 𝛼)
(sin 𝛾)(1) + (cos 𝛾)(0) + (0)(0) (sin 𝛾)(0) + (cos 𝛾)(cos 𝛼) + (0)(sin 𝛼) (sin 𝛾)(0) + (cos 𝛾)(− sin 𝛼) + (0)(cos 𝛼)

(0)(1) + (0)(0) + (1)(0) (0)(0) + (0)(cos 𝛼) + (1)(sin 𝛼) (0)(0) + (0)(− sin 𝛼) + (1)(cos 𝛼)

⎤

⎥

⎥

⎦

=
⎡

⎢

⎢

⎣

cos 𝛾 − sin 𝛾 cos 𝛼 sin 𝛾 sin 𝛼
sin 𝛾 cos 𝛾 cos 𝛼 −cos 𝛾 sin 𝛼
0 sin 𝛼 cos 𝛼

⎤

⎥

⎥

⎦

.

Interestingly, 𝑍𝑋 ≠ 𝑋𝑍. Indeed, while rotations commute in 2 dimensions, they do not always commute
in 3 dimensions.

15.

(a) Without matrices, consider a cube with side length 2 at the origin so its faces are perpen-
dicular to the coordinate axes. Rotate it, first 90◦ counterclockwise about the 𝑦-axis, then
90◦ counterclockwise about the 𝑥-axis. Note that rotations are done facing from the “pos-
itive side” of the coordinate axis. The net result should leave two vertices fixed. Which
two?

This requires a good amount of geometric visualization. The answer is the vertices (1, 1, 1) and (−1,−1,−1).
Observe the figures below:

Figure 7: The starting position of
the cube.

Figure 8: Rotation about the 𝑦-
axis.

Figure 9: Rotation about the 𝑥-
axis.

Indeed, 𝐴 and 𝐺 remain fixed. These are the vertices (1, 1, 1) and (−1,−1,−1).

(b) Write a vector for the axis of rotation.

The vector is any nonzero multiple of
⎡

⎢

⎢

⎣

1
1
1

⎤

⎥

⎥

⎦

. In the following figure, the axis of rotation is graphed.
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Figure 10: The net axis of rotation is ⟨1, 1, 1⟩.

(c) How many degrees do you think the net rotation of the cube is? Be careful; the answer is
not 180◦.

The rotation is 120◦, because 𝐸 is going to 𝐷, 𝐷 is going to 𝐵 and 𝐸 is going to 𝐷, a cycle with period 3.

(d) Let’s check our answers using matrices. Write a matrix product that corresponds to a
rotation of 90◦ about the 𝑦-axis, followed by 90◦ about the 𝑥-axis.

Rotation of 90◦ about the 𝑦-axis: 𝑌 =
⎡

⎢

⎢

⎣

cos 90◦ 0 sin 90◦
0 1 0

− sin 90◦ 0 cos 90◦

⎤

⎥

⎥

⎦

=
⎡

⎢

⎢

⎣

0 0 1
0 1 0
−1 0 0

⎤

⎥

⎥

⎦

.

Rotation of 90◦ about the 𝑥-axis: 𝑋 =
⎡

⎢

⎢

⎣

1 0 0
0 cos 90◦ − sin 90◦
0 sin 90◦ cos 90◦

⎤

⎥

⎥

⎦

=
⎡

⎢

⎢

⎣

1 0 0
0 0 −1
0 1 0

⎤

⎥

⎥

⎦

.

As usual, matrix multiplication goes right-to-left, so the product is 𝑋𝑌 .

(e) Multiply out the matrix product.

𝑋𝑌 =
⎡

⎢

⎢

⎣

1 0 0
0 0 −1
0 1 0

⎤

⎥

⎥

⎦

⎡

⎢

⎢

⎣

0 0 1
0 1 0
−1 0 0

⎤

⎥

⎥

⎦

=
⎡

⎢

⎢

⎣

(1)(0) + (0)(0) + (0)(−1) (1)(0) + (0)(1) + (0)(0) (1)(1) + (0)(0) + (0)(0)
(0)(0) + (0)(0) + (−1)(−1) (0)(0) + (0)(1) + (−1)(0) (0)(1) + (0)(0) + (−1)(0)
(0)(0) + (1)(0) + (0)(−1) (0)(0) + (1)(1) + (0)(0) (0)(1) + (1)(0) + (0)(0)

⎤

⎥

⎥

⎦

=
⎡

⎢

⎢

⎣

0 0 1
1 0 0
0 1 0

⎤

⎥

⎥

⎦

.

Interesting!

(f) Remember that the real eigenvector in a rotation gives the axis of rotation, and the com-
plex eigenvalues give information about the net rotation. Evaluate these and check your
answers for (a) and (b).

We first find the eigenvalues:

det
⎡

⎢

⎢

⎣

−𝜆 0 1
1 −𝜆 0
0 1 −𝜆

⎤

⎥

⎥

⎦

= 0

−𝜆 ⋅ det
[

−𝜆 0
1 −𝜆

]

− 0 ⋅ (something) + 1 ⋅ det
[

1 −𝜆
0 1

]

= 0

−𝜆3 + (1 + 0 ⋅ −𝜆) = 0

𝜆3 = 1.

We let 𝜆 = cis 𝜃:

cis3 𝜃 = 1 ⟹ 𝜃 = 0, 2𝜋
3
, 4𝜋
3
.

Thus, 𝜆 = 1, cis 2𝜋
3 , cis 4𝜋

3 .
We now compute the eigenvector for the axis of rotation, which should correspond to 𝜆 = 1.

⎡

⎢

⎢

⎣

−𝜆 0 1
1 −𝜆 0
0 1 −𝜆

⎤

⎥

⎥

⎦

⎡

⎢

⎢

⎣

𝑥
𝑦
𝑧

⎤

⎥

⎥

⎦

=
⎡

⎢

⎢

⎣

0
0
0

⎤

⎥

⎥

⎦
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⎡

⎢

⎢

⎣

−1 0 1
1 −1 0
0 1 −1

⎤

⎥

⎥

⎦

⎡

⎢

⎢

⎣

𝑥
𝑦
𝑧

⎤

⎥

⎥

⎦

=
⎡

⎢

⎢

⎣

−𝑥 + 𝑧
𝑥 − 𝑦
𝑦 − 𝑧

⎤

⎥

⎥

⎦

=
⎡

⎢

⎢

⎣

0
0
0

⎤

⎥

⎥

⎦

.

These yields 𝑥 = 𝑦 = 𝑧 and the eigenvector family 𝑠
⎡

⎢

⎢

⎣

1
1
1

⎤

⎥

⎥

⎦

, confirming our previous result.

We can find the angle of rotation by the angle the complex eigenvalues make with the 𝑥-axis. These
eigenvalues are cis 2𝜋

3 , cis 4𝜋
3 , which make a 2𝜋

3 = 120◦ angle with the 𝑥-axis. Thus, the magnitude of the
rotation is 120◦, confirming our hypothesis.

16. Here are two rotation matrices:

i.

⎡

⎢

⎢

⎢

⎣

2
3 − 2

3 − 1
3

1
3

2
3 − 2

3
2
3

1
3

2
3

⎤

⎥

⎥

⎥

⎦

, ii.

⎡

⎢

⎢

⎢

⎣

7
9

4
9

4
9

− 4
9 − 1

9
8
9

4
9 − 8

9
1
9

⎤

⎥

⎥

⎥

⎦

.

(a) What is the determinant of each matrix? (Don’t work, think!)

The determinant of each matrix is 1, since rotation matrices have determinant 1.

(b) What is true of each row and each column?

The sums of squares of each element in each row and column is 1. Therefore, each row vector and
column vector is a unit vector. As an example, consider the top row of (ii):

(7
9

)2
+
(4
9

)2
+
(4
9

)2
= 81

81
= 1.

(c) Find the axis of rotation associated with each matrix.

i.

⎡

⎢

⎢

⎢

⎣

2
3 − 2

3 − 1
3

1
3

2
3 − 2

3
2
3

1
3

2
3

⎤

⎥

⎥

⎥

⎦

We find the eigenvalues:

det

⎡

⎢

⎢

⎢

⎣

2
3 − 𝜆 − 2

3 − 1
3

1
3

2
3 − 𝜆 − 2

3
2
3

1
3

2
3 − 𝜆

⎤

⎥

⎥

⎥

⎦

= 0

(2
3
− 𝜆

)

⋅ det

[

2
3 − 𝜆 − 2

3
1
3

2
3 − 𝜆

]

−
(

−2
3

)

det

[

1
3 − 2

3
2
3

2
3 − 𝜆

]

− 1
3
⋅ det

[

1
3

2
3 − 𝜆

2
3

1
3

]

= 0

−𝜆3 + 2𝜆2 − 2𝜆 + 1 = 0

(𝜆 − 1)(𝜆2 − 𝜆 + 1) = 0.

The real eigenvalue is 𝜆 = 1, so we find the corresponding eigenvector:

⎡

⎢

⎢

⎢

⎣

2
3 − 𝜆 − 2

3 − 1
3

1
3

2
3 − 𝜆 − 2

3
2
3

1
3

2
3 − 𝜆

⎤

⎥

⎥

⎥

⎦

⎡

⎢

⎢

⎣

𝑥
𝑦
𝑧

⎤

⎥

⎥

⎦

=
⎡

⎢

⎢

⎣

0
0
0

⎤

⎥

⎥

⎦

⎡

⎢

⎢

⎢

⎣

− 1
3 − 2

3 − 1
3

1
3 − 1

3 − 2
3

2
3

1
3 − 1

3

⎤

⎥

⎥

⎥

⎦

⎡

⎢

⎢

⎣

𝑥
𝑦
𝑧

⎤

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎣

− 1
3𝑥 − 2

3𝑦 −
1
3𝑧

1
3𝑥 − 1

3𝑦 −
2
3𝑧

2
3𝑥 + 1

3𝑦 −
1
3𝑧

⎤

⎥

⎥

⎥

⎦

=
⎡

⎢

⎢

⎣

0
0
0

⎤

⎥

⎥

⎦

.

Multiplying by 3 on both sides yields the system of equations
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⎧

⎪

⎨

⎪

⎩

−𝑥 − 2𝑦 − 𝑧 = 0
𝑥 − 𝑦 − 2𝑧 = 0
2𝑥 + 𝑦 − 𝑧 = 0

.

The solution to this system of equations is 𝑥 = 𝑧 = −𝑦. Thus, the eigenvector family is 𝑠
⎡

⎢

⎢

⎣

1
−1
1

⎤

⎥

⎥

⎦

, and the

axis of rotation is the vector ⟨1,−1, 1⟩.

i.

⎡

⎢

⎢

⎢

⎣

7
9

4
9

4
9

− 4
9 − 1

9
8
9

4
9 − 8

9
1
9

⎤

⎥

⎥

⎥

⎦

We find the eigenvalues:

det

⎡

⎢

⎢

⎢

⎣

7
9 − 𝜆 4

9
4
9

− 4
9 − 1

9 − 𝜆 8
9

4
9 − 8

9
1
9 − 𝜆

⎤

⎥

⎥

⎥

⎦

= 0

(7
9
− 𝜆

)

⋅ det

[

− 1
9 − 𝜆 8

9
− 8

9
1
9 − 𝜆

]

−
(4
9

)

⋅ det

[

− 4
9

8
9

4
9

1
9 − 𝜆

]

+
(4
9

)

⋅ det

[

− 4
9 − 1

9 − 𝜆
4
9 − 8

9

]

= 0

−𝜆3 + 7𝜆2
9

− 7𝜆
9

+ 1 = 0

−1
9
(𝜆 − 1)(9𝜆2 + 2𝜆 + 9) = 0.

The real eigenvalue is 𝜆 = 1, so we find the corresponding eigenvector:

⎡

⎢

⎢

⎢

⎣

7
9 − 𝜆 4

9
4
9

− 4
9 − 1

9 − 𝜆 8
9

4
9 − 8

9
1
9 − 𝜆

⎤

⎥

⎥

⎥

⎦

⎡

⎢

⎢

⎣

𝑥
𝑦
𝑧

⎤

⎥

⎥

⎦

=
⎡

⎢

⎢

⎣

0
0
0

⎤

⎥

⎥

⎦

.

⎡

⎢

⎢

⎢

⎣

− 2
9

4
9

4
9

− 4
9 − 10

9
8
9

4
9 − 8

9
8
9

⎤

⎥

⎥

⎥

⎦

⎡

⎢

⎢

⎣

𝑥
𝑦
𝑧

⎤

⎥

⎥

⎦

= 1
9

⎡

⎢

⎢

⎣

−2𝑥 + 4𝑦 + 4𝑧
−4𝑥 − 10𝑦 + 8𝑧
4𝑥 − 8𝑦 + 8𝑧

⎤

⎥

⎥

⎦

=
⎡

⎢

⎢

⎣

0
0
.

⎤

⎥

⎥

⎦

The solution to this system of equations is ⟨𝑥, 𝑦, 𝑧⟩ = 𝑠⟨−2, 0, 1⟩. This is the axis of rotation: ⟨−2, 0, 1⟩.

(d) Find the angle of rotation associated with each matrix.

i.

⎡

⎢

⎢

⎢

⎣

2
3 − 2

3 − 1
3

1
3

2
3 − 2

3
2
3

1
3

2
3

⎤

⎥

⎥

⎥

⎦

From the last time we dealt with this matrix, we found that the complex eigenvalues satisfy 𝜆2 − 𝜆+ 1 = 0.

By the quadratic formula, the solutions to this quadratic are 𝜆 = 1±𝑖
√

3
2 .

Since cis ±60◦ = 1
2 ±

√

3
2 𝑖 = 𝜆, the rotation is 60◦.

i.

⎡

⎢

⎢

⎢

⎣

7
9

4
9

4
9

− 4
9 − 1

9
8
9

4
9 − 8

9
1
9

⎤

⎥

⎥

⎥

⎦
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Previously, we found that the complex eigenvalues of this matrix satisfy the polynomial equation 9𝜆2+2𝜆+
9 = 0. By the quadratic formula, the roots of this equation are

−2 ±
√

22 − 4 ⋅ 92
18

= −1
9
±

4𝑖
√

5
9

.

The angle of rotation is given by

tan−1
𝑦
𝑥
=

± 4
√

5
9

− 1
9

= ± tan−1 4 ⋅
√

5,

which has magnitude tan−1(4
√

5).
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